The mean curvature at $p \in S$ is the average of the signed curvature over all angles θ :

$$H = \frac{1}{2\pi} \int_0^{2\pi} \kappa(\theta) d\theta$$

$$H = \frac{1}{2}(\kappa_1 + \kappa_2)$$
 by Euler theorem

A surface which evolves under the mean curvature of the surface S ' is said to obey the heat-type equation called the mean curvature flow $^\circ$

The sphere is the only embeded surface of constant positive mean curvature without boundary or singularities \circ

For a surface defined in 3D space • The mean curvature is related to a unit normal of the

surface
$$\circ 2H = -\nabla \cdot \vec{n}$$