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Pseudosphere surfaces with constant Gaussian curvature K=-1

ds® =du® +2cosgdudv +dv® - where ¢ is the angle between the
asymptotic lines °

The second fundamental form L=N=0 > M =sin¢

And the Gauss-Codazzi equation is ¢, =Sin¢

Theorem -

If a surface with K=-1 has the first fundamental form written as

| =cos® wdu® +sin® @dv® > then @ satisfies the so-called sine-Gordon equation *
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The sine-Gordon equation is one of class of very special type of nonlinear partial
differential equations which admit soliton solutions ©
§ 02 Sine Gordon equation
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2. In light-cone coordinates (u,v) U= T’V =
Soliton solutions -
1. Kink type
2. Breather type
3. Antikink type
sine-Gordon soliton J&_I H PR AVRFR L) fi# (kink type) :
P(x,t) =4arctan(exp(£y (X —vt —X,)))

, N 1 %
Hrp v BAOLFHIZRREE o X e E « v = ya=eii

1-Vv?

LR

N

The Sine-Gordon equation has kink and antikink soliton solutions:
1
V1 —v?

¢ These solitons collide elastically, preserving their shape (a hallmark of integrability).

¢(z,t) = 4arctan (e"-"{”r "t)) , y=

« The inverse scattering method can solve the equation exactly due to its Lax pair formulation.
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The sine-Gordon equation governs the geometry of pseudospherical surfaces through the
angle between asymptotic lines °

Soliton solutions represent persistent(—& HY) » particle-like deformations * while
integrability via Bicklund transformations allows systematic construction of complex
surfaces °

This bridges nonlinear wave dynamics and differential geometry ° revealing how solitons
sculpt constant-negative-curvature manifolds °
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§ 04 Darboux transformation
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§ 05 self-duality and Backlund transformations
The sine-Gordon eqgation is self-dual under the Backlund transformation
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If @ and g5 are two solutions, they satisfy:

8:(¢ — ¢) = 2 sin (#) ,

o6 +9) - Lsin (M) ,

where X is a spectral parameter.

* Applying this transformation twice leads back to the original equation, demonstrating self-

duality.
Feature Backlund Transformation Darboux Transformation
Nature Nonlinear PDEs linking solutions Linear operator transformation
Scope Works directly on PDE solutions Acts on eigenfunctions/potentials
Typical Use Sine-Gorden, KdV, Liouville Schrodinger, NLS, AKNS systems
Duality Often self-dual (e.g., Sine-Gordon)  Usually not self-dual

(3) Connection via Lax Pairs

» For many integrable PDEs (e.g., KdV, NLS), the Backlund transformation can be derived from a
Darboux transformation applied to the associated Lax pair.
> Example: The KdV equation’s Backlund transform arises from dressing the Lax operator via
Darboux.
* In geometric contexts (e.g., pseudospherical surfaces), both transforms appear as gauge

transformations.



(4) Practical Implications

¢ Backlund: More useful for constructing explicit solutions (e.g., solitons) via PDE techniques.

e Darboux: More suited for spectral analysis (e.g., adding/removing bound states in quantum

mechanics).

¢ Backlund: Originated in differential geometry (e.g., transforming surfaces of constant curvature).

* Darboux: Linked to gauge theory (e.g., dressing methods in soliton theory).
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