
§ KdV 方程 

§ The KdV equation： 
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用以描述淺水波的演進，其中6 xuu 是非線性的部分，
xxxu 是相散的部分

( dispersive term)。 

(色散：光波速度隨頻率改變的物理現象。) 

 

Let x ct    (c 是波速) 

Let ( , ) ( )u x t f x ct  ，(有點像 Lorentz transformation) 
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(1) 式到(2)式，時間 t 不見了？ 

是因為我們做了行波解（traveling wave solution）的假設。 

其實不是「時間不見了」，而是通過變數變換將時間隱含在空間變數中，從而將 

PDE 轉化為 ODE，便於求解。 

 

看起來有點 Lorentz 變換的味道，DeepSeek 這麼說： 

這確實是一種與 Lorentz 變換精神相通的數學手法：換個參考系，讓問題變簡

單。 

 
不同之處： 



兩者都是通過座標變換將時間與空間綁在一起，從而簡化問題。 

這種「行波座標」在物理與數學中非常常見，尤其是在處理波動力學、孤立

子、非線性波等問題時。 

這種變換讓我們能在一個隨著波一起移動的參考系中觀察波，此時波看起來是

靜止的，問題大大簡化。 

 

(2) 積分一次得 23 "cf f f A     將 'f 視為積分因子(即兩邊同乘以 'f ) 
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§ Proposition (Miura) 

If v is a solution to the modified KdV equation 26 0t x xxxv v v v    then 2

xu v v   

solves the KdV equation 6 0t x xxxu uu u   。 
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若 u 是已知，則 2

xu v v  是 v 的 Riccati equation。 

2

xv u u  稱為 Miura(三浦)transformation。  

§ Scattering and Inverse Scattering 

 

This method transforms the nonlinear problem into a linear problem in the form of a 

scattering problem，which can be solved more easily。 

The solution to the original nonlinear equation is then reconstructed from the scattering 

data。 

A process similar to the Fourier transform。 

6 0t x xxxu uu u   的 Fourier transform 為 
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Where u=u(x,t) and f(x) has a Fourier transform。 

Define Fourier transform ( ) ( ) ikxF k f x e dx
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and inverse Fourier transform 
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在線性的時候，逆散射變換就是富氏變換。 

 

Examples for Scattering and Inverse Scattering 

One-soliton example： 2( ,0) 2sechu x x   

 

 



 

 

Two-soliton example： 2( ,0) 6sechu x x    

 

 

 

 

§ The conservation law  KdV 有各種守恆律 

Consider u(x,t)，T=f(u)，X=g(u)，and u satisfies the equation 
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This is a conservation law with density T and flux X。 
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以 KdV 方程為例 6 0t x xxxu uu u    

1. Lax 對與選擇種子解 

KdV 方程的 Lax 對的空間部分： 2 ( , )xL u x t    

和時間演化部分： 

選擇種子解
0( , )u x t 與對應的特徵函數

1( , )x t ，滿足 
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2. 構造 Darboux 變換矩陣 
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3. 生成新解 
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