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§ Proposition (Miura)

If v is a solution to the modified KdV equation Vv, —6v°V, +V,,, =0 then U=V’+v,

solves the KdV equation u, —6uu, +u,, =0 °
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§ Scattering and Inverse Scattering
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Figure 1: Idea of Scattering and Inverse Scattering

This method transforms the nonlinear problem into a linear problem in the form of a
scattering problem * which can be solved more easily °

The solution to the original nonlinear equation 1s then reconstructed from the scattering
data °

A process similar to the Fourier transform ©
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Where u=u(x,t) and f(x) has a Fourier transform °

Define Fourier transform  F (k) = _fi f (x)e ™™ dx
. , 1 e .
and inverse Fourier transform f (X) = 5 J F(k)e™dk
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Iw u.e "dx = Jm 9 (ue™)dx = 9 J " uedx = y where U is the Fourier transform
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of u(x,p) °
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Examples for Scattering and Inverse Scattering
One-soliton example : u(X,0) = —2sech® x

1. Scattering Equation at ¢t = 0:

VYpw + A — (=2 sech? x)JY = 0.

0 5. O A Y,
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Solving this equation, we find ¢/ to be:

2. Substitute 7" = tanh z:

1(1 —T?)3 = lsech:.':.
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3. Bound State: In the case of a bound state, we have:

M=-1, c1(0)=2, e(t) =2

Y(T) =

4. Unbound States: For unbound states, we deduce the behavior of 1):

ik +1 ”
P(x) ~ 1 ) 4o as 2 — .
ik —1

which gives us the remaining scattering data:

a(k) = k-1 b(k) = 0.

We can then build our solution by inverse scattering:
B(x +y,t) = 287y,
K(z,y,t)= w(:r t)e™,
w(z,t) = —e* sech (z — 4t),
K(z,z,t) = —e~ "t sech (z — 4t),

which gives the one-soliton solution

u(z,t) = —2sech? (z — 4t).



Two-soliton example : u(x,0) = —6sech? x

1. p = 2: Consider the case when there are two eigenvalues,

P = }Isech?::r,, c1(0) =12
P2 = %tanhmsech:r,, c2(0) =6
b(k,0) =0
2. Solution:

3 + 4 cosh(2x — 8t) + cosh(4dx — 64t)

u(z,t) = —12 (3 cosh(z — 28t) + cosh(3z — 36t))2 ~
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§ The conservation law  KdV H & fE~FA 1

. . . 0T oX
Consider u(x,t) » T=f(u) » X=g(u) » and u satisfies the equation E-F& =0 -
This 1s a conservation law with density T and flux X °
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We have EJ'_OOTdXZ_X‘O—Ow =0 > When X —0 as || —> o0 » implies that

j_deX =constant °
Example -

0=u, +6uu +u, = 8—u+£(—3u2 +u,)=0
ot ox
T=u,X=u,-3u® then jw u(x,t)dx =constant > where we have taken u,u,,u, —0

as |X|—>o0
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Take T :%uz, X =-2u°+uu,, —%u

So .[7 u? = constant °
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