
Solve 

(a) 2 0t xu u u   for 0t  ，u(x,0)=1 if x<1，u(x,0)=0 if 1x  ，where u is a weak 

solution of the equation 

(b) 2 0t xu u u   for 0t  ，u(x,0)=0 if x<0，u(x,0)=1 if 0 1x  ，u(x,0)=0 if 

x>1，where u is the weak solution satisfying this entropy condition。 

 

(a) A weak solution of a partial differential equation (PDE) is a generalization of the 

concept of a classical solution。While a classical solution requires the function to be 

sufficiently smooth (e.g., differentiable) and satisfy the PDE pointwise everywhere， 

a weak solution relaxes these requirements。Instead，it satisfies the PDE in an 

integral or distributional sense，making it applicable to problems where classical 

solutions may not exist due to discontinuities or singularities。 
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，where u is a weak solution of the equation。 

This is a conservation law。 
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2. Characteristics and shock formation 

 

3. Rankine-Hugoniot condition 
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4. Weak solution 

(1) The shock propagates from x=1 with speed 
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(2) The solution is a step function with the shock at 
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(b) 2 0t xu u u   for 0t  ，
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，where u is the weak solution 

satisfying this entropy condition。 

The weak solution of the PDE  2 0t xu u u  with the given initial condition and entropy 

condition is constructed by considering a rarefaction wave at  x=0  and a shock wave 

at  x=1。 

1. Rarefaction wave at x=0 

 

2. Shock wave at x=1 

 

3. Solution structure(valid for 
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