§

A shock equation in the context of partial differential equations (PDEs) typically refers to a situation where a discontinuity (or "shock") develops in the solution of a hyperbolic PDE \circ This often arises in nonlinear hyperbolic conservation laws , which describe phenomena such as fluid dynamics , gas dynamics , and traffic flow \circ

1. Hyperbolic conservation laws

$$\frac{\partial u}{\partial t} + \frac{\partial f(u)}{\partial x} = 0$$
, where $u(x,t)$ is the conserved quantity (e.g., density)

momentum ' energy) $\circ~$ f(u) is the flux function \circ

- 2. Shock formation
- 3. Rankine-Hugoniot condition

When a shock forms , the solution is no longer differentiable , and the PDE must be interpreted in a weak sense \circ The Rankine-Hugoniot condition provides a relationship between the states on either side of the shock \circ For a shock moving with speeds , the condition is :

 $s(u_r) - s(u_l) = f(u_r) - f(u_l)$

(1) u_l and u_r are the states to the left and right of the shock , respectively \circ (2) sis the shock speed \circ

4. Entropy condition

To ensure uniqueness of the solution \cdot an additional entropy condition is often imposed \circ This condition selects the physically relevant solution (e.g., the solution that satisfies the second law of thermodynamics) \circ

Examples

1. Burger equation

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0$$

This is a conservation law with $f(u) = \frac{1}{2}u^2 \circ$

If the initial data is such that characteristics intersect , a shock will form , and the Rankine-Hugoniot condition must be applied to describe the solution \circ

2.