§ 6.1 Laplace equation Au =u, +u,, =0

HEER AU=V-VU (subharmonic<> Au>0)

A solution of the Laplace equation is called a harmonic function °
Au = f with a given function is called Poisson equation °

L. 0 o°
A ( the Laplace operator ) is defined as * Au = Za_xl:
i=1 i
Polar coordinates (r,0) :
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Shperical coordinates (r,8,¢) : Au ——zg(r2 al:

Laplace-Beltrami operator A, 1s a generalization of the Laplace operator

to functions defined on Riemannian manifolds °
f:M >R A,f =div,(grad, f) =iai(\/@g”aj f)
Jol

in local coordinates (X,..., X")

f:QcR" >R
Key properties -
1. Mean value property

For any ball B(x,r)cQ » u(x)= u(y)ds(y)

1
|6B(x, 1) LB
Maximum principle
3. Smoothness
Liouville theorem

A bounded harmonic function on R" must be constant °

There 1s no non-constant negative harmonic function defined on the Euclidean
space °

There is no non-constant negative subharmonic function on R?



Examples :

1. The functionu(X,y,z) =

1 . .
———— {3 harmonic everywhere except at the
origin °
2. Electrostatics(FFEE22)
curlE=0 » divE =4xp
For the electric potential ¢ > A¢ =div(grad¢) = —divE=-47p
3. Steady fluid flow
Analytic functions of a complex variable  Cauchy-Riemann equation
z=x+y > f(z)=u(z)+1v(z) is an analytic function if f(z)= z.o:anzn
n=0

5. Brownian motion (B 5 Wiener process)

HEHEEN T DA R Rkl - Ho e B O5tE - Wil BRSO 1R -
822 > AnBHEE) Bt Eme A T ey 572 (SDE) HYFEHETE
dB, = odW,

oW, S EEAELELETE (Wiener process ) » o SEIEHUREL ©
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The Feynman-Kac formula relates solutions of certain PDEs to expectations of stochastic

processes involving Brownian motion ©
For example ’ the solution to the PDE -

ou ou 1 ,, o4
—+uX)—+=0c"(X)— =
. 1(x) ~13° ( )5 >
with terminal condition #(7,x)=¢(x) > can be expressed as -

u(t, x) = E[#(X;)[X, =x]

where X, 1is a stochastic process driven by Brownian motion ©

In summary > Brownian motion 1s a stochastic process that bridges PDEs and probability
theory > providing a probabilistic interpretation of solutions to certain PDEs and enabling
the modeling of random phenomena °



§ maximum principle
Let D be a conncted bounded open set ° Let u(x,y,z) be a harmonic function in D that 18

continuous on D (=D wWaD) ¢ Then the maximum and the minimum values of u are

attained on 0D and nowhere inside ° (unless U =conatsnt)

FHRIE #5251 Robert Finn $£%/] Eberhard Hopf HY strong maximum
principle ©

M E S EHEE] maximum principle °

[maximum principle U, =ku,, is a one-dimensional diffusion equation PDE102-2]
[=f Extreme of functions of two variables]

§ rotational 1nvariance
The Laplace equation 1s invariant under all rigid motions ©

In engineering the Laplacian 1s a model for 1sotropic physical situations > in which there is
no preferred direction ©
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Exercises
1. Show that a function which 1s a power series in the complex variable x+1y must satisfy
the Cauchy - Riemann equations and therefore Laplace equation ©

z=x+y  f{(2)=u(@)+Hv(z)=ux,y)+iv(xy) f(z)= z.o:anzn

R Ry AR B Ll s sk AR P R o IRIIEE S x Ay o
o _ou .ov_< . Of _ou -@:-w - yn-1
= §+|&_§ann(x+|y) 'ay_ayH&y |nZ:l:ann(x+|y)

i(%u +i %) = %u +i % » 0] DAf5FI] Cauchy-Riamann equations :

w v N
ox oy x oy

Uy =V, =V, =—U,, then Au=0

dv v duy du
ox’ 8y2 oyox~  oxoy

2. Find the solutions that depend only on r of the equation U, +U,, +U,, = k’u > where

[F]HE Av=

k 1s a positive constant ©
ERALKE Z (r,0,9) T » X=rsin@cosg,y=rsindsing,z=rcosé



Laplacian HYZ=0 5 ¢

Vif = L9 ( 23f) + L o (sin@g) + L _of

ror \| or

r2sin 6 60 00 r2 sin? 02

Virrs + . S T — 2 1 d sz
B 0 RIS - Laplacian FHERTHIEIESR R RV U= g
1d,,du ) d,6 ,du ) 2 v du v' v
——(r"—)=ku=—(r"—)=kru > let v(r)= TU=——=———
r’ dr( dr) :>dr( dr) et vin=ru() rodr rr
ey i(rzd—u :i(rv'—v):v'+rv"—v':rv"

dr dr™ dr” dr

n V n
=k’ru=k’r’x—=k’rv =v"=k?
r
v(r) = Ae¥ +Be™
U Ae“ +Be ™

r

rv

3. Find the solutions that depend only on r of the equation U,, +U,, = k?u > where kis a

positive constant ©

The given equation 1s the Helmholtz equation °

—g(ra—u) =ku=u, +Eur =k%u --+(1)
r

ror or
Let s=kr » ()FIE[EIZELLr® » the equation becomes :
,d%u du

S pcy +s e s’u=0 (amodified Bessel differential equation )

u(r) =cl,(kr)+c,K,(kr)
where |, and K, are the modified Bessel functions of the first and second kind °
respectively > and C;,C, are constants °

The Besseel differential equation :

2
x2%+x%+(x2—v2)y=0
X X

General solution is  Y(X) =c¢,J, (X)+C,Y,(X)

The modified Bessel differential eauation :




4. Solve U, +uy,+uU, =0 in the spherical shell O<a<r<b with the boundary condition

u=A on r=a and u=B on r=b * where A and B are constants °

ST

r? dr

du C C
? ) O=u=-2+c,=>Uu=—2+c,
r r

Atr=A> A—g+cz,atr—B B—g
a b

+¢, i C,c,

Aa(b—r)+Bb(r—a)

ur)= r(b—a)

5. Solve U, +Uu, =1 inr<a with u(x,y) vanishing on r=a °

——( —) 1 with u(a)=0
rdr

u(r) :Z(r2 —a%)

6. Solve U, +U, = 1 in the annulus([E[¥%) a<r<b with u(x,y) vanishing on both parts of

the boundary r=a an r=b °

__( _) 1:>u(r)_—r +cinr+d  with u(a)=u(b)=0
r dr 4

. b2 In(") +a? In(2)
u(r) = 3r -———2——"3
In()

7. Solve U, +Uy, +U, =1 in the spherical shell a<r<b with u(x,y,z) vanishng on both

the inner and ouer boundaries °

r? 8r
— 2 2
“(f)=1f2—&+cz ! set u(@)=u(b)=0 figc, = —22@+0) @ +ab+b
6 r 6 5
u(r):%(rz_w_aZ_ab_bz)

: : : 0
8. Solve U, +Uy, +U, =1 in the spherical shell a<r<b with u=0 on r=a and 6_l: =0

onr=b ° Thenlet a—0 in your answer and interpret the result °



r’—-a> b*1 1
—(-3)
6 3'r a

u(r) =

b3
Taking the limit =0 ° the term 3a hecomes singular ¢ This indicates the solution

develops a singularity at the origin » corresponding to an implicit Dirac delta source ©
B fRER B AN o

9. A spherical shell with inner radius 1 and outer radius 2 has a steady-state temperature
distribution ° Its inner boundary is held at 100°C - Its outer boundary satisfies
ou .
o =—y <0 > where y 1isaconstant °
(a) Find the temperature ° (Hint : the temperature depends only on the radius ° )
(b) What are the hottest and coldest temperatures ?

(c) Can you choose y so that the temperature on its outer boundary is 20°C ?

(a) Steady-state means the temperature has stabilized and remains constant over time at
every point in the shell ©

The steady-state temperature distribution within the spherical shell 1s determined by

solving Laplace's equation in spherical coordinates with radial symmetry ©

,du

1d A
——(r*>)=0 > u(r)=—+B
rzdr( dr) ) r

=1 u(D)=100 » atr=2 » M
or

=—y<0= A=4y

u(r) :ﬂ+100—47/
r

(b) -~ u(r)is decreasing ° The hottest temperature is u(1)=100°C - the coldest
temperature is U(2) =100-25°C
(c) y=40 atr=2

10. Prove the uniqueness of the Dirichlet problem Au= f inD > with u=g on bdyD by
the energy method ° That is » after subtracting two solutions w=u-v * multiply the
Laplace equation for w by w itself and use the divergence theorem °
(1) Assume two solutions U,,U, and define wW=u, —u,

Since Au, =Au, =f > wehave AwW=0 inD
On the boundary * w=u, -u,=9g-9g=0
(2) Apply Green first identity



ID wAwdx =0
ID |VW|2dX = J-BDW% ds - ID wAwdx =0

[VW°>0= Vw=0=w is constant > but w=0 on &D » implies the constant is

zero ° Therefore U, =u,

Green theorem -
[ M+ Nely = []. (a—N—a—M)dxd

Divergence theorem -

HE-ﬁdS = deivﬁdv ..Gauss TEH (FE EH)
s v

Green’s first identity: f (Vo - Vo + pA)dV = f —dS

aD

1. Green's First Identity (used to derive the second identity):

['[ Vu-VodV = f u—dS /fquvdV

aD

2. Second Identity: Subtract the first identity for « and v swapped:
f/ u@ ds = //] (uAv — vAu)dV.
on an
aD

Green's first identity 1s a fundamental result in vector calculus that relates volume integrals
over a domain 2 to surface integrals over its boundary 0D ° It is derived from the
divergence theorem and serves as a higher-dimensional analog of integration by parts °

Formally, for two sufficiently smooth scalar functions ¢ and v defined on a domain D C R™ with
boundary @D, Green's first identity states:

f(v¢-vw)dv+/m¢dvz b5 ‘b
D D aD

Where V¢-V i is the dot product of the gradients of ¢pand ¢  ©

0 ) o . .
a—z/ =Vyen isthe normal derivative of  on 0D ° (n is the outward unit normal

vector to 6D) o



. ) i ou
11. Show that there is no solution of Au=1f inD > N

=g on bdyD in three
dimensions > unless J. ” fdxdydz = J.J. gdS - Also show the analogue in one and two
D oD

dimensions °
To demonstrate the necessity of the compatibility condition for the existence of a solution

. .0
to the Neumann problem A z=f in D with % =g on 0D > we proceed as follows :

1. Integrate both sides of the Poisson equation over the domain D

T v = ], v

2. Apply the divergence theorem to the left-hand side J.'UDV -(Vu)dVv = ”@D Vu-ndS

Where n is the outward unit normal °
Substituting the Neumann boundary condition Vu-n=¢g

3. Then [[|_fdv ={[_gds

If this equality fails > the assumption that a solution u exists leads to a contradiction °

12. Check the validity of the maximum principle for the harmonic function
1_ X2 _ y2

1_2X—|—X2+y2 inthe dlSk 5:{X2+y2 Sl}

u(x,y) =

u(x,y) 1s singular at (1,0) » where it becomes discontinuous ©
The maximum principle requires harmonicity in the open domain and continuity on the

closure » Since u fails to be continuous on the closed disk D * the maximum principle
does not apply °

13. A function u(x) is subharmonic in D if Au>0 in D ° Prove that its maximum value
18 attained on bdyD ° (Note that this 1s not true for the minimum value ° )

§ 6.2 Rectangles and cubes

Au=u, +uU, =0 inD > Where D is a rectangle {0<x<a,0<y<b} - on each sides one of

of the standard boundary conditions 1s prescribed ° (inhomogeneous Dirichlet »
Neumann * or Robin)



Examples
1. Boundary conditions indicates as in
the left figure °

u=g(x)

u=jy) u, = kiy)

u, tu= hix)

2. For simplicity > assume h=0 > =0 » k=0 °
We separate the variables

u=glx)
w0 Lo U y)=X(x)-Y(y) > then we get
X" oy"
u,+u=0 =
X Y
Hence there is a constant A such that X"+AX =0, for 0<x<a > Y"-AY =0
for 0<y<b

X"=—AX with x(0)=X'(@)=0
Y"=AY  with Y'(0)+Y(0)=0

Exerises

1. Solve u, +u, =0 in the rectangle O<x<a ° 0<y<b with the following boundary

conditions
u =-a onx=0>u, =0 onx=a

u,=b ony=0-u,=0 ony=b

u(x, y):%xz—ax—%y2+by+c

DeepSeck E3 TR /5724 » {H Walter A. Strauss 554E57 » FISENY |
UEx >y WZRKEEA

2. Prove that the eigenfunctions {sinmysinnz} are orthogonal on the square
{O<y<70<z<n}

To prove the orthogonality of the eigenfunctions {sin(zzzy)sin(z2z) }on the

square {0<y<z,0<z<xz} > consider two distinct

eigenfunctions sin(my)sin(z22) and sin(py)sin(gz) with(m,n) = (p,q) °

The 1nner product 1s defined as:

(sin(my) sin(nz), sin(py) sin(gz)) = ]: /: sin(my) sin(nz) sin(py) sin(gz) dy dz.



This double integral separates into the product of two single-variable integrals :

( fn “ sin(my) sin(py) dy) ( A ' sin(nz) sin(gz) dz) ,

The orthogonality of sine functions on [0, 7] states that :

/ sin(kz) sin(lz) dz = {
0
Thus

1. Ifm= por n=(q ° at least one of the integrals vanishes * making the entire
product zero °

2. If m=pand n=q ° both integrals equal% , yielding (%)2 #0

Hence - the eigenfunctions are orthogonal on the square °

Thus:

« If m # porn # g, atleast one of the integrals vanishes, making the entire product zero.

¢ Ifm = pand n = g, both integrals equal 7, yielding (%)2 # 0.

Hence, the eigenfunctions are orthogonal on the square.

3. Find the harmonic function u(x,y) in the square D={0<x<7,0<y <7z} with
the boundary conditions -

u, =0 fory=0andfor y==

u=0 for x=0 and U=cos’y :%(1+ cos2y) for X=rx

Assume u(x,y)=X(X)Y(y)

X"-AX =0

Y"+AY =0

Boundary condition © Y'(0)=Y'(x) =0

Vzu:O:{

Y"+AY =0=Y :Asinﬂy+ Bcos\/zy
Y'(0)=Y'(x)=0= 4, =n*Y (y)=cos(ny),n=0,12,...

X"n?X =0=> X =Ae™+Be™ s u(0,y)=0= A+B =0

Hence X, =C, sinh(nx) (except n=0)



u(x,y) = %Jricn sinh(nx) cos(ny)

n=1

Apply boundary condition at X=7 >

Ar & . 1 1 1

——+» C_sinh(nz)cos(ny) == (1+cos?2 =—C=——
X sinh2 ) coy

u( x, — 4 -

(. yr 27 2sinhg(2

4. Find the harmonic function in the square {O<x<1 » O<y<1 }with the boundary
conditions U(x,0) =x,u(x,2) =0,u,(0,y) =0,u, (L, y) = y*

Assume u(x,y)=v(x,y)+w(x,y)
v(x,0)=x,v(x,1)=0,v(0,y)=v(1,y)=0

w,(0,y) =0,w, (L y) = y* » w(x,0)=w(x,1)=0
SralfE v > w ZRIEAENN -
o RSB ARE v(Ly) © V(X Y) = X —inisin(nﬂx)smh(nﬁy)

n=1

w(X,y) = niCn cosh(nzx)sinh(nzy) » HiiC = ﬂ%nlr)](nn)

5. Solve Example 1 in the case b = 1, g(x) = h(x) = k(x) = 0 but j(x) an
5 arbitrary function.

6. Solve the following Neumann problem in the cube {0 <x < 1,0 <y < 1,
0 <z <1}: Au=0with u,(x,y, 1) = g(x, y) and homogeneous Neumann
conditions on the other five faces, where g(x, y) is an arbitrary function
with zero average.

7. (a) Find the harmonic function in the semi-infinite strip {0 < x < 7,
0 <y < oo} that satisfies the “boundary conditions™:

w@,y) =u(r,v) =0, u(x,0)=h(x), limu(x,y)=0.
y—00

(b) What would go awry if we omitted the condition at infinity?

§ 6.3 Poisson formula
A much more interesting case 1s the Dirichlet problem for a circle °



The rotational invariance of A provides a hint that the circle 1s a natural shape for
harmonic functions °

2 2 2
U, +u, =0 for X"+y“<a

u=h(8) for x*+y*=a’

Saparate variables in polar coordinates -
_Fu 1 13
Yooor® ror r’ o6
R"©+IR'©+LRO"=0 - rR4+R_O"_
r r -R ®
rYR"+rR'-AR=0 and ©"+10=0
With BC : ©(0+2x)=0(0) for —oo<f<owo
Thus » A=n* and ©(8) = Acosn@+Bsinnd n=1,2,3,-
There is also the solution 4=0 with ©(f)=A
- HOR—FBELIVER 0 51215 F Poisson formula
o h(¢) d¢
o a*—2arcos(d —¢)+ri2m’

u=R(r)®() u,+u

u(r,0) = (a!2 — r2)

S

Exercises
1. Suppose that u is a harmonic function in the disk D={r<2} and that u=3sin26+1
for r=2 - Without finding the solution > answer the following questions

(a) Find the maximum value of uin D
(b) Calculus the value of u at the origin °

2. Solve U, +U, =0 in the disk {r<a} with the boundary condition u=1+ 3sin@ on
r=a
TR FE RN Laplace equation - %+ 1ou, 1 2

SHITEEEU(r, 0) =R(r)O(9)

R EFRREE = A EHTER - 0(0) e 327(? +10=0
H—ff# B 0,(0) = A, cos(nd) + B, sin(nd)
E R R"+IR'-n*R=0

—_ =
ror r?o6°



2 2

pou T, 10U 4. rreslrerlren=0

o” ror r°o6 r r
HO"=-10 * FfLLr*R"+rR'=AR =0
@'+ 10 =0 H—fikfil F ©(0) = A, cos(nd) + B, sin(n@) Z AL » A 271
B BlA=n*n=012,..
T2 R R+ IR'=n"R =0
H—fEfR R (r)=Cr"+D,r" » Hl D, = 0 LAFECRAE r=0 R EEHL -
BRI Ry u(a,0) =1+3sin 0 - R I TR

1+3sin@= A + > (A cosnd+B, sinng) ---

n=1

u(r,0) :1+£sin0
a
Solve U, +u, =0 in the disk {r<a} with the boundary condition U= sin®@
sin39:§sin0—lsin30
4 4

u(r.0) = (ysin 0— (" )sin30
4a 43°
Show that P(r,8) isa harmonic function in D by using polar coordinates ° That
? 10 1 ¢°

s use A=—s+-—+—5—
o’ ror r°oo

aZ . ?’2 GO Fan
P(r.0) = :1+2Z(5) cos né (17)
=1

a? —2arcosf +r?

is the Poisson kernel. Note that P has the following three properties.

§ 6.4 circles » wedges * and annuli

Awedge: {0 <00 <6),0 <r <a}
An annulus: {0 <a <r < b}
The exterior of a circle: {a < r < oo}

Examples

u, =h(0) @




1. The wedge

2. The annlus

3. The exterior of a circle
Example 1 The wedge

Example The Annulus

Example
The exterior of a circle

Exercises

1. Solve uy + uy, = 0in the exterior {r > a} of a disk, with the boundary
condition u = 1 4 3sinf on r = a, and the condition at infinity that u
be bounded as r — o0.

2. Solve u,, + uy, = 0in the disk r < a with the boundary condition

du
- hH = f(9)1
ar
where f(6) is an arbitrary function. Write the answer in terms of the

Fourier coefficients of f(8).

3. Determine the coefficients in the annulus problem of the text.

4. Derive Poisson’s formula (9) for the exterior of a circle.

5. (a) Find the steady-state temperature distribution inside an annular
plate {1 < r < 2}, whose outer edge (r = 2) is insulated, and on
whose inner edge (r = 1) the temperature is maintained as sin” 6.
(Find explicitly all the coefficients, etc.)
(b) Same, except u = 0 on the outer edge.

6. Find the harmonic function u in the semidisk {r < 1,0 < 6 < '} with
u vanishing on the diameter (¢ = 0, ) and

u=msinf —sin260 onr = 1.



9.

10.

11.

12.

Solve the problem u,, + u,, = 0 in D, with u = 0 on the two straight
sides, and u = h(@) on the arc, where D is the wedge of Figure 1, that
is, a sector of angle B cut out of a disk of radius a. Write the solution as
a series, but don’t attempt to sum it.

An annular plate with inner radius a and outer radius b is held at tem-
perature B at its outer boundary and satisfies the boundary condition
du/dr = A atits inner boundary, where A and B are constants. Find the
temperature if itis at a steady state. (Hint: It satisfies the two-dimensional
Laplace equation and depends only on r.)

Solve u, + uy, = 0in the wedge r < a,0 < 6 < B with the BCs
u=6 onr=a, u=0 onfd=0, and u=p oné =§p.

(Hint: Look for a function independent of r.)

Solve uy, + uy, = 0 in the quarter-disk 2+ y*<a’ x>0,y >0}
with the following BCs:
a
u=0 onx=0andony=0 and a_u: 1 onr=a.
r

Write the answer as an infinite series and write the first two nonzero
terms explicitly.

Prove the uniqueness of the Robin problem
) du
Au= f 1D, a——|—au =h onbdy D,
n

where D is any domain in three dimensions and where a is a positive
constant.

(a) Prove the following still stronger form of the maximum principle,
called the Hopf form of the maximum principle. If u(x) is a non-
constant harmonic function in a connected plane domain D with
a smooth boundary that has a maximum at X, (necessarily on the
boundary by the strong maximum principle), then du/dn > 0 at xq
where n is the unit outward normal vector. (This is difficult: see
[PW] or [Ev].)

(b) Use part (a) to deduce the uniqueness of the Neumann problem in
a connected domain, up to constants.



13. Solve u, +uy,y =0 in the region {« <@ < B,a <r < b} with the
boundary conditions # = 0 on the two sides 8 =« and 6 = B, u = g(#)
on the arc r = a, and u = h(6) on the arc r = b.



