Peter J.Olver
Ch6 Generalized Functions and Green’s Functions

6.1 Generalized Functions
6.1.1. Evaluate the following integrals: (a) fﬂ 4(x) cosxzdx, (b) /: 4(z) (xz — 2) dz,

(c) /[‘Jg‘sl(lf)ezd:u", (d) flaé‘(I—Q) logx dx, (e) j: J,_T)I da, (f)[ 5(?11(13:.

6.1.2. Simplify the following generalized functions; then write out how they act on a suitable

test function u(x): (a) € d(z), (b) zd(x—1), (c) 38,(z)—3zd_y(z),

() % (e) (cosz)[6(z) +8(z — ) +6(z+m)], (f) %ﬁf(”’)

6.1.3. Define the generalized function ¢(z) = 6(z + 1) — d(x — 1):
(a) as a limit of ordinary functions; (b) using duality.

6.1.4. Find and sketch a graph of the derivative (in the context of generalized functions) of the
following functions:

z?, 0<x<3,

= 1
@ f@={ z, -1<z<o, (b) o) = { Snlel el <3
’ . 0, otherwise,
0, otherwise,
sinmtr, x>1, sin @, r < —m,
(c) h(x):{ 1-2%, —-1<z<1, (d) k(x) = ? -7’ —m<z <0,
e’ r < —1, e ", x> 0.

z+1, —-l<z<0,
6.1.5. Find the first and second derivatives of the functions (a) f(z) =4 1—z, 0<z <1,
0, otherwise,

[z], —-2<z<2,

(b) k() = { |

l4+cosme, —-1<z<l,

otherwise, otherwise.

© s@={ g

6.1.6. Find the first and second derivatives of f(z) = (a) e~ Il , (b)) 2|z|—|z—-1],
(c) |22 +z|, (d) zsign(z?—4), (e) sin|z|, (f) |sinz| (g) sign(sinz).

n

6.1.7. Explain why the Gaussian functions g, () = ¢~™"7" have the delta function (z) as

their limit as n — oc.

B

6.1.8. In this exercise, we realize the delta function d.(z) as a limit of functions on a finite
interval [a,b]. Let a < £ < b.

In(r — &)
M,

M, = f g, (r — §) dz, satisty (6.8-9), and hence hmOo g, (z) = 55(3:)

(a) Prove that the functions g, () = , where g, (x) is given by (6.10) and

(b) One can, alternatively, relax the second condition (6.9) to llm f gz —&)de =1
Show that, under this relaxed definition, lim g,(z —¢&) = 5£ (3:)
n— oo



1
6.1.9. For each positive integer n, let g, (z) = { 3n. |z] <1/n,

) Sketch h of
0, otherwise. (a) etcl a grapii o

T
g,,(x). (b) Show that lim g,(z) = d(z). (c¢) Evaluate f,(z) = / g,,(y) dy and sketch
n—r oo - 00
a graph. Does the sequence f, () converge to the step function o(r) as n — oo? (d) Find
the derivative h,,(z) = g/ (z). (e) Does the sequence h,, (x) converge to §'(x) as n — co?

2
6.1.10. Answer Exercise 6.1.9 for the hat functions g, (r) = { n—n"lz|, |z|< 1‘/n:
0, otherwise.

6.1.11. Justify the formula = §(z) = 0 using (a) limits, (b) duality.

6.1.12.(a) Justify the formula §(2z) = %;5(3:) by (z) limits, (%) duality. (b) Find a similar
formula for d(azx) when a > 0. (¢) What about when a < 07

6.1.13.(a) Prove that o(Az) = o(x) for any A > 0. (b) What about if A < 07 (¢) Use parts

(a,b) to deduce that §(Azx) = |Tl| d(zx) for any A # 0.

6.1.14. Let g(z) be a continuously differentiable function with g’(x) # 0 for all € R. Does the
composition §(g(x)) make sense as a distribution? If so, can you identify it?

6.1.15. Let £ < a. Sketch the graphs of (a) s(z) = [I d¢(2)dz, (b) r(z) = fI o¢(2) dz.

6.1.16. Justify the formula lim n [5(3: - l) - 5(3: -+ %)] = —25’(3:).

kil
™ —F 00

6.1.17. Define the generalized function ¢ " (z):
(a) as a limit of ordinary functions; (b) using duality.

6.1.18. Let 5?) (z) denote the kth derivative of the delta function d¢(x). Justify the formula

(5&“ Ju) = (—1)}c ul®) (&) whenever u € CF is k—times continuously differentiable.

6.1.19. According to (6.22), x 6(x) = 0. On the other hand, by Leibniz’ rule,
(z8(x)) = 6(x) + x6'(x) is apparently not zero. Can you explain this paradox?



6.1.20. If f € C', should (f48) = f6" or f'6+ f6'?

6.1.21.(a) Use duality to justify the formula f(x)d'(x) = f(0)8'(x) — f'(0) §(x) when f € CL.

(b) Find a similar formula for f(z) 5 (z) as the product of a sufficiently smooth function
and the n'P derivative of the delta function.

6.1.22. Use Exercise 6.1.21 to simplify the following generalized functions; then write out how
they act on a suitable test function u(z):

(a) p(x) = (x—2)8"(x), (b) ¥(z)=(1+sinx)[s(z)+6"(x)]
(c) x(x) =2*[8(x—1) = 8" (z—2)], (d) w(z)=e"8"(z+1).

) b
6.1.23. Prove that if f(z) is a continuous function, and f f(z)dx = 0 for every interval [a,b],
then f(z) = 0 everywhere. @

6.1.24. Write out a rigorous proof that there is no continuous function d¢(z) such that the in-
ner product identity (6.20) holds for every continuous function u(x).

6.1.25. True or false: The sequence (6.24) converges uniformly.

6.1.26. True or false: ||| = 1.

The Fourier Series and Delta Functions

6.1.27. Determine the real and complex Fourier series for d(x — ), where — 7 < £ < w. What
periodic generalized function(s) do they represent?

6.1.28. Determine the Fourier sine series and the Fourier cosine series for §(z — £), where
0 < & < 7. Which periodic generalized functions do they represent?



6.1.29. Let n > 0 be a positive integer. (a) For integers 0 < j < n, find the complex Fourier
series of the 27—periodically extended delta functions 6;(z) = 6(z —2jm/n). (b) Prove that
their Fourier coefficients satisfy the periodicity condition ¢;, = ¢; whenever & = | mod n.

(¢) Conversely, given complex Fourier coefficients that satisfy the periodicity condition
¢, = ¢; whenever k =1 mod n, prove that the corresponding Fourier series represents a lin-

ear combination of the preceding periodically extended delta functions 30 (x),..., Sn—l (x).
Hint: Use Example B.22. (d) Prove that a complex Fourier series represents a 2mw—periodic
function that is constant on the subintervals 27 j/n < = < 2#(j + 1)/n, for j € Z, if and
only if its Fourier coefficients satisfy the conditions

ke, =le¢, kE=101%#0 mod n, ¢, =0, 0 # k=0 mod n.

6.1.30.(a) Find the complex Fourier series for the derivative of the delta function §'(z) by di-
rect evaluation of the coefficient formulas. (b) Verify that your series can be obtained by
term-by-term differentiation of the series for §(x). (c) Write a formula for the nt partial
sum of your series. (d) Use a computer graphics package to investigate the convergence of
the series.

6.1.31. What is the Fourier series for the generalized function g(z) = zd(z)? Can you obtain
this result through multiplication of the individual Fourier series (3.37), (6.37)?

6.1.32. Apply the method of Exercise 3.2.59 to find the complex Fourier series for the function
flx) = d(x)e'™. Which Fourier series do you get? Can you explain what is going on?

6.1.33. In Exercise 6.1.12 we established the identity §(z) = 2J(2x). Does this hold on the
level of Fourier series? Can you explain why or why not?

6.1.34. How should one interpret the formula (6.38) for the periodic extension of the delta
function (a) as a limit? (b) as a linear functional?

6.1.35. Write down the complex Fourier series for ¢”. Differentiate term by term. Do you get
the same series? Explain your answer.

6.1.36. True or false: If you integrate the Fourier series for the delta function é(z) term by
term, you obtain the Fourier series for the step function o(z).

6.1.37. Find the Fourier series for the function §(z) on the interval —1 < z < 1. Which (gener-
alized) function does the Fourier series represent?

6.1.38.. Prove that cosnz — 0 (weakly) as n — oo on any bounded interval [a,b].

6.1.39. Prove that if u,, — u in norm, then u,, — u weakly.



6.1.40. True or false: (a) If w, — u uniformly on [a,b], then u,, — u weakly.
(b) If u,(z) — u(x) pointwise, then u, — u weakly.

6.1.41. Prove that the sequence f, (r) = cos? nz converges weakly on [—m,w]. What is the

limiting function?
6.1.42. Answer Exercise 6.1.41 when f, (z) = cos®nz.

6.1.43. Discuss the weak convergence of the Fourier series for the derivative §(z) of the delta
function.

6.2 Green’s Functions for one-dimensional BVP

6.2.1. Let ¢ > 0. Find the Green's function for the boundary value problem —cu” = f (z),
u(0) = 0, (1) = 0, which models the displacement of a uniform bar of unit length with
one fixed and one free end under an external force. Then use superposition to write down
a formula for the solution. Verify that your integral formula is correct by direct differentia-
tion and substitution into the differential equation and boundary conditions.

6.2.2. A uniform bar of length ¢ = 4 has constant stiffness ¢ = 2. Find the Green’s function for
the case that (a) both ends are fixed; (b) one end is fixed and the other is free. (¢) Why is
there no Green’s function when both ends are free?

6.2.3. A point 2 cm along a 10 cm bar experiences a displacement of 1 mm under a concen-
trated force of 2 newtons applied at the midpoint of the bar. How far does the midpoint
deflect when a concentrated force of 1 newton is applied at the point 2 cm along the bar?

6.2.4. The boundary value problem — d,i (c(:c) zx—u) = f(z), u(0) = u(l) = 0, models the
T

for 0 <z < 1.

displacement u(z) of a nonuniform elastic bar with stiffness ¢(z) = T2
z

(a) Find the displacement when the bar is subjected to a constant external force, f = 1.
(b) Find the Green’s function for the boundary value problem. (c¢) Use the resulting su-
perposition formula to check your solution to part (a). (d) Which point 0 < £ < 1 on the
bar is the “weakest”, i.e., the bar experiences the largest displacement under a unit impulse
concentrated at that point?

6.2.5. Answer Exercise 6.2.4 when ¢(z) = 1+ .



6.2.6. Consider the boundary value problem —u" = f(z), u(0) =0, u(1) = 24(1).
(a) Find the Green’s function. (b) Which of the fundamental properties does your Green’s
function satisfy? (c¢) Write down an explicit integral formula for the solution to the bound-
ary value problem, and prove its validity by a direct computation. (d) Explain why the

related boundary value problem —u” = f, u(0) = 0, u(1) = u(1), does not have a Green’s
function.

1 - 1
6.2.7. For n a positive integer, set f, (z) = AT L | <

0, otherwise.
(a) Find the solution u,, (z) to the boundary value problem —u" = f, (2), u(0) = u(1) = 0,
assuming 0 < § — % <&+ % < 1. (b) Prove that lim wu,(x)= G(z;{) converges to the

=00

Green'’s function (6.51). Why should this be the case? (c¢) Reconfirm the result in part (b)
by graphing us(x), u,5(x), uss (), along with G(z; &) when £ = 3.

6.2.8. Solve the boundary value problem —4u” + 9u = 0, u(0) = 0, u(2) = 1. Is your solution

unique?

6.2.9. True or false: The Neumann boundary value problem —u” +u = 1, «'(0) = «'(1) = 0,
has a unique solution.

6.2.10. Use the Green'’s function (6.64) to solve the boundary value problem (6.57) when the
1, 0<z<3,

forcing function is f(z) = { —1 % cr<i

6.2.11. Let w > 0. (a) Find the Green’s function for the mixed boundary value problem
—u" +w?u=f(z), uw0)=0, v'(1)=0.
(b) Use your Green'’s function to find the solution when f(x) = {

6.2.12. Suppose w > 0. Does the Neumann boundary value problem —u” + wiu = f(z),

u'(0) = u’(1) = 0 admit a Green’s function? If not, explain why not. If so, find it, and then
write down an integral formula for the solution of the boundary value problem.

6.2.13.(a) Prove the addition formula (6.63) for the hyperbolic sine function.
(b) Find the corresponding addition formula for the hyperbolic cosine.

6.2.14. Prove the differentiation formula (6.55).



6.3 Green’s Functions for the Planar Poisson Equations

6.3.1. Let Cp be a circle of radius R centered at the origin and n its unit outward normal. Let
f(r,8) be a function expressed in polar coordinates. Prove that df/dn = 8f/dr on C.

6.3.2. Let f(z) > 0 be a continuous, positive function on the interval a < = < b. Let (2 be the
domain lying between the graph of f(z) on the interval [a, b] and the r—axis. Explain why
(6.77) reduces to the usual calculus formula for the area under the graph of f.

6.3.3. Explain what happens to the conclusion of Lemma 6.16 if €2 is not a connected domain.

6.3.4. Can you find constants ¢, such that the functions g, (z,y) = ¢, [1 4+ n%(z? +y?)]7!
converge to the two-dimensional delta function: g, (z,y) — é(x,y) as n — co?

6.3.5. Explain why the two-dimensional delta function satisfies the scaling law

5(82,6y) = g 0(,y),  for  B>0.

6.3.6. Write out a polar coordinate formula, in terms of §(r — ry) and §(6 — 6), for the two-
dimensional delta function d(z — x5,y —yy) = é(x — 2¢) d(y — y)-

6.3.7. True or false: d(x) = o(|| x||)-

6.3.8. Suppose that £ = f(z,y), 7 = g(z,y) defines a one-to-one C! map from a domain
D C R? to the domain Q = { (&, 1) = (f(z,v),9(z,v))| (z,y) € D} C R?, and has nonzero
Jacobian determinant: J(z,y) = f,9, — f,9, # 0 for all (z,y) € D. Suppose further that

(0,0) = (f(zq.ygy): 9(zg.yg)) € Q for (zy,yy) € D. Prove the following formula governing
the effect of the map on the two-dimensional delta function:

5(F(@sy), 9(a,y)) = W (6.126)

6.3.9. Suppose f(zr,y) = { (1]’ 22 : gg z i Compute its partial derivatives of and of in

the sense of generalized functions.

6.3.10. Find a series solution to the rectangular boundary value problem (4.91-92) when the

boundary data f(z) = d(x — ) is a delta function at a point 0 < £ < a. Is your solution
infinitely differentiable inside the rectangle?

6.3.11. Answer Exercise 6.3.10 when f(z) = §'(z — £) is the derivative of the delta function.



6.3.12. A 1 meter square plate is subject to the Neumann boundary conditions du/dn = 1 on
its entire boundary. What is the equilibrium temperature? Explain.

6.3.13. A conservation law for an equilibrium system in two dimensions is, by definition, a di-
vergence expression
09X 9y
— 4+ —=0 6.127
dx dy ( )
that vanishes for all solutions.

(a) Given a conservation law prescribed by v = (X,Y’) defined on a simply connected do-
main D, show that the line integral fc v-nds = fc X dy — Y dr is path-independent,
meaning that its value depends only on the endpoints of the curve C.

(b) Show that the Laplace equation can be written as a conservation law, and write down
the corresponding path-independent line integral.

Note: Path-independent integrals are of importance in the study of cracks, dislocations, and
other material singularities, [49].

6.3.14. In two-dimensional dynamics, a conservation law is an equation of the form
T  I9X 9y
— =+ =0, 6.128
ot "o Ty (6.128)
in which T is the conserved density, while v = (X,Y") represents the associated fluz.
(a) Prove that, on a bounded domain 2 C R?, the rate of change of the integral / '/; , T dx dy

of the conserved density depends only on the flux through the boundary 9€2.
(b) Write the partial differential equation u, +uu, + wu, = () as a conservation law. What

is the integrated version?

6.3.15. A circular disk of radius 1 is subject to a heat source of unit magnitude on the subdisk
r< % Its boundary is kept at 0°.
(a) Write down an integral formula for the equilibrium temperature.
(b) Use radial symmetry to find an explicit formula for the equilibrium temperature.

6.3.16. A circular disk of radius 1 meter is subject to a unit concentrated heat source at its
center and has completely insulated boundary. What is the equilibrium temperature?

6.3.17.(a) For n > 0. find the solution to the boundary value problem
2 2
—Au=Zemn RO gty w(z,y) =0, z2+y

(b) Discuss what happens in the limit as n — oo.

6.3.18.(a) Use the Method of Images to construct the Green’s function for a half-plane {y > 0}
that is subject to homogeneous Dirichlet boundary conditions. Hint: The image point is
obtained by reflection. (b) Use your Green’s function to solve the boundary value problem

1
_Au_l_-ky: y >0, u(:a:,O)—O



6.3.19. Construct the Green’s function for the half-disk 2 = {182 +y? <1, y> 0} when sub-
ject to homogeneous Dirichlet boundary conditions. Hint: Use three image points.

6.3.20. Prove directly that the Poisson kernel (6.137) solves the Laplace equation for all r < 1.

6.3.21. Provide the details for the following alternative method for solving the homogeneous
Dirichlet boundary value problem for the Poisson equation on the unit square:

Uy — Uy, = f(z,y), u(z,0)=0, u(z,1)=0, u0,y)=0, u(l,y)=0, 0<z, y<L

(a) Write both u(z,y) and f(z,y) as Fourier sine series in y whose coefficients depend on z.
(b) Substitute these series into the differential equation, and equate Fourier coefficients to
obtain an infinite system of ordinary boundary value problems for the x-dependent Fourier
coefficients of u. (¢) Use the Green’s functions for each boundary value problem to write
out the solution and hence a series for the solution to the original boundary value problem.
(d) Implement this method for the following forcing functions:

(i) f(z,y) =sinny, (i) f(z,y) =sinwz sin27y, (i) f(z,y) =1

6.3.22. Use the method of Exercise 6.3.21 to find a series representation for the Green’s func-
tion of a unit square subject to Dirichlet boundary conditions.

6.3.23. Write out the details of how to derive (6.134) from (6.133).

6.3.24. True or false: If the gravitational potential at a point a is greater than its value at the
point b, then the magnitude of the gravitational force at a is greater than its value at b.

6.3.25.(a) Write down integral formulas for the gravitational potential and force due to a square
plate § = {—1 < z,y < 1} of unit density p = 1. (b) Use numerical integration to calculate
the gravitational force at the points (2,0) and (\/5 V2 ) Before starting, try to predict
which point experiences the stronger force, and then check your prediction.

6.3.26. An equilateral triangular plate with unit area exerts a gravitational force on an ob-
server sitting a unit distance away from its center. Is the force greater if the observer is lo-
cated opposite a vertex of the triangle or opposite a side? Is the force greater than or less
than that exerted by a circular plate of the same area? Use numerical integration to evalu-
ate the double integrals.

6.3.27. Consider the wave equation u,, = CQUII on the line —oo < = < co. Use the d’Alembert

formula (2.82) to solve the initial value problem u(0,z) = d(z — a), u;(0,z) = 0. Can you
realize your solution as the limit of classical solutions?

6.3.28. Consider the wave equation u,, = c2u1 » on the line —oo < = < o0o. Use the d’Alembert
formula (2.82) to solve the initial value problem (0, z) = 0, u,(0,2) = é(zr — a), modeling
the effect of striking the string with a highly concentrated blow at the point x = a. Graph
the solution at several times. Discuss the behavior of any discontinuities in the solution. In
particular, show that u(t, z) # 0 on the domain of influence of the point (a,0).
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6.3.29. (a) Write down the solution u(t, z) to the wave equation u,;, = 4u,, on the real line
ey e 1=z, |z| <1, du _ . .
with initial data u(0,z) = { 0. otherwise, BF (0,z) =0. (b) Explain why u(t,x) is

not a classical solution to the wave equation. (c¢) Determine the derivatives 32u/3t2 and

5211/ 9z in the sense of distributions (generalized functions) and use this to justify the fact
that u(f, ) solves the wave equation in a distributional sense.

6.3.30. A piano string of length £ = 3 and wave speed ¢ = 2 with both ends fixed is hit by a
hammer 5 of the way along. The initial-boundary value problem that governs the resulting
vibrations of the string is

?u %u du
W =4 @ 1 u(t,O) =0=H(t. 3), u(0.$)=0. e (O.I) 26(33— 1).
(a) What are the fundamental frequencies of vibration?
(b) Write down the solution to the initial-boundary value problem in Fourier series form.
(¢) Write down the Fourier series for the velocity du/dt of your solution.
(d) Write down the d’Alembert formula for the solution, and sketch a picture of the string
at four or five representative times.
(e) True or false: The solution is periodic in time. If true, what is the period? If false, ex-
plain what happens as ¢ increases.

6.3.31. (a) Write down a Fourier series for the solution to the initial-boundary value problem

Pu  0u du
W= 922 u(t,—1) =0=u(t,1), u(0,z) = é(z), E(OLL‘) =0.

(b) Write down an analytic formula for the solution, i.e., sum your series. (c¢) In what
sense does the series solution in part (a) converge to the true solution? Do the partial sums

provide a good approximation to the actual solution?

6.3.32. Answer Exercise 6.3.31 for

Pu  9? 0
&—;‘ = 6—;; C ot —-1) =0=u(t,1),  u(0,z)=0, a—‘: 0,z) = 8(z).



