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§ CH 4 Separation of Variables Peter J. Olver
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1.  Wave equations : sound waves > water waves - elastic waves ’ electromagnetic
waves and so on ° (hyperbolic class)

2. Heat equation models diffusion processes > including thermal energy in solids >
solutes in liquids » and biological populations ° (parabolic class)

3. Laplace equation and its inhomogeneous counterpart > the Poisson equation >
both variables represent space coordinates > x and y * and the associated boundary
value problems model the equilibrium configuration of a planar body - e.g. the
deformations of a membrane ° (elliptic class)

The solutions of Laplace equation are known as harmonic functions -

4.1 The Diffusion and Heat Equations
c.f. PDE103HeatEquation1-2

The separation solutions to the heat equation are based on the exponential ansatz
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dv
ut,x)=e'v(x) =>-y—=Av

dx
Each nontrivial solution v(x) #0 isan eigenfunction > with associated eigenvalue A >
for the linear differential operator L(V) =—pv"(X)

u, —ku,, = f(x1),t>0
Ulo=9(x),0<x<I
u(t,0)=u(,h=0,t>0

The eigenfunction are founded by solning the Dirichlet boundary value probles
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If A is either complex > or real and nonpositive > then the only solution to the
boundary value problem is the trivial solution v(X)=0 - This means that all the
eigenvalues need necessarily be real and positive °

When A>0 > the general solution is a trigonometric function

v(t) =acoswt +bsinwt > where w:\ﬁ
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and a and b are arbitrary constants. The first boundary condition requires v(0) = a = 0.
This serves to eliminate the cosine term, and then the second boundary condition requires
v(f) = bsinw/l = 0.

Therefore, since we require b # 0 — otherwise, the solution is trivial and does not qualify
as an eigenfunction — wf must be an integer multiple of 7, and so
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We conclude that the eigenvalues and eigenfunctions of the boundary value problem (4.20)
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The corresponding eigensolutions (4.18) are
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Each represents a trigonometrically oscillating temperature profile that maintains its form
while decaying to zero at an exponentially fast rate.

To solve the general initial value problem, we assemble the eigensolutions into an
infinite series,
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whose coefficients b,, are to be fixed by the initial conditions. Indeed, assuming that the
series converges, the initial temperature profile is

.

] (4.24)

u(0,7) = Z h,, sin

n=1
This has the form of a Fourier sine series (3.52) on the interval [0, £]. Thus, the coefficients

are determined by the Fourier formulae (3.53), and so
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The resulting formula (4.23) describes the Fourier sine series for the temperature u(t, z) of
the bar at each later time t > 0.

§ Smoothing and long-time behavior

§ The heated ring redux

§ inhomogeneous boundary conditions

§ Robin boundary conditions

§ The root cellar problem



