Consider the heat equation:

$$\begin{cases} u_t = u_{xx}, (x,t) \in (-\infty,\infty) \times (0,\infty) \\ u(x,0) = f(x), x \in R \end{cases}, \text{ where } f(x) \text{ is continuous and } 0 \le f(x) \le 1$$

- (a) Show that the equation has a solution u which satisfies $\lim_{t\to 0^+} u(x,t) = f(x)$ for $x \in R$
- (b) Show that there is an f(x) with $0 \le f(x) \le 1$ such that the equation has a solution u satisfying $\limsup_{t \to \infty} u(0,t) = 1$ and $\liminf_{t \to \infty} u(0,t) = 0$

The fundamental solution is $G(x,t) = \frac{1}{\sqrt{4\pi t}} \exp(-\frac{x^2}{4t})$ and

$$u(x,t) = \int_{-\infty}^{\infty} f(y) \cdot \frac{1}{\sqrt{4\pi t}} \exp(-\frac{(x-y)^2}{4t}) dy \text{ is a particular solution } \circ$$

(a)是要求證明 solution u(x,t)在 $t \to 0^+$ 時收斂到 initial condition f(x) 對於無限區間的熱方程,我們使用傅立葉變換來求解。

定義傅立葉變換:
$$\hat{u}(k,t) = \int_{-\infty}^{\infty} u(x,t)e^{-ikx}dx$$

對熱方程兩邊取傅立葉變換,利用導數的性質: $\frac{\partial}{\partial t}\hat{u}(k,t) = -k^2\hat{u}(k,t)$

這是一個一階常微分方程,通解為: $\stackrel{^{\wedge}}{u}(k,t)=\stackrel{^{\wedge}}{f}(k)e^{-k^2t}$

其中 $\hat{f}(k) = \int_{-\infty}^{\infty} f(x)e^{-ikx}dx$ 是 f(x)的 Fourier transform

由反傅立葉變換
$$u(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(k) e^{-k^2 t} e^{ikx} dx$$

這是 initial function f(x)與 Gaussian kernel 的卷積: $u(x,t) = \int_{-\infty}^{\infty} f(y) \frac{1}{\sqrt{4\pi t}} e^{-\frac{(x-y)}{4t}} dy$

我們希望證明 $\lim_{t\to 0^+} u(x,t) = f(x)$,這相當於證明高斯核 $\frac{1}{\sqrt{4\pi t}}e^{-\frac{(x-y)^2}{4t}}$ 在 $t\to 0^+$ 時收

斂到 Dirac δ -function $\delta(x-y)$ 。

如果 f(x)是連續函數,則卷積(convolution)積分 $\lim_{t\to 0^+}\int_{-\infty}^{\infty}f(y)\frac{1}{\sqrt{4\pi t}}e^{-\frac{(x-y)^2}{4t}}dy=f(x)$

因此,當 $t \to 0^+$ 時 u(x,t)收斂到 initial condition f(x),即 $\lim_{t \to 0^+} u(x,t) = f(x)$ 。

The fundamental solution to the heat equation $u_t = u_{xx}$ is given by :

$$K(x,t) = \frac{1}{\sqrt{4\pi t}} e^{-\frac{x^2}{4t}} \quad \circ$$

This function satisfies the heat equation and has the property that : $\lim_{t\to 0^+} K(x,t) = \delta(x)$, where $\delta(x)$ is the Dirac delta function \circ

The solution u(x,t) to the heat equation with the initial condition u(x,0)=f(x) can be expressed as the convolution of f(x) with the heat kernel K(x,t):

$$u(x,t) = \int_{-\infty}^{\infty} K(x-y,t) f(y) dy \circ$$

Substituting the expression for K(x,t), we get:
$$u(x,t) = \frac{1}{\sqrt{4\pi t}} \int_{-\infty}^{\infty} e^{\frac{(x-y)^2}{4t}} f(y) dy$$

As $t \to 0^+$, the heat kernel K(x-y, t) becomes highly concentrated around y=x \circ This means that the integral will be dominated by the values of f(y) near y=x \circ

Formally, we can use the fact that the heat kernel approximates the Dirac delta function

$$\lim_{t \to 0^+} t \to 0^+ : \lim_{t \to 0^+} K(x - y, t) = \delta(x - y)$$

Therefore, the convolution integral becomes : $\lim_{t\to 0^+} u(x,t) = \int_{-\infty}^{\infty} \delta(x-y) f(y) dy = f(x)$

§ Let
$$K(x,t) = \frac{1}{\sqrt{4\pi t}} \exp(-\frac{x^2}{4t})$$
, $x \in R$, t>0

$$f(x) \in C(R)$$
, $f(x+1)=f(x)$ and $\int_0^1 f(x)dx = 3$. Define $u(x,t) = \int_R K(x-y,t)f(y)dy$

- (a) Show that $\lim_{(x,t)\to(x_0,0^+)} u(x,t) = f(x_0)$ for each $x_0 \in R$
- (b) Show that $\lim_{t\to\infty} u(0,t) = 3$

(a)
$$u(x,t) = \int_R K(x-y,t)f(y)dy$$
, where $K(x,t) = \frac{1}{\sqrt{4\pi t}} \exp(-\frac{x^2}{4t})$ is the heat kernel \circ

The heat kernel K(x,t) has the following properties:

- 1. Normalization : $\int_{R} K(x,t)dx = 1$ for all t>0
- 2. Delta function behavior: As $t \to 0^+$, K(x,t) tends to the Derac delta function $\delta(x)$. This means that for any continuous function f(x),

$$\lim_{t \to 0^+} \int_R K(x - y, t) f(y) dy = f(x)$$

The function f(x) is periodic 1, implies that f(x) can be represented as a Fourier

series :
$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{2\pi i n x}$$
, where c_n are the Fourier coefficients \circ

The Fourier transform of the heat kernel K(x,t) is $\hat{K}(\xi,t) = \exp(-4\pi^2 \xi^2 t)$

This shows that the heat kernel acts as a low-pass filter in the frequency domain, attenuating high-frequency components as $t \to 0^+$

Using the properties of the heat kernel and the periodicity of f(x), we can write:

$$u(x,t) = \int_{\mathbb{R}} K(x-y,t) f(y) \, dy.$$

As $t \to 0^+$, the heat kernel K(x-y,t) becomes increasingly concentrated around y=x, and the integral effectively samples f(y) at y=x. Therefore, we have:

$$\lim_{t o 0^+} u(x,t) = f(x).$$

Since this holds for any $x \in \mathbb{R}$, it follows that:

$$\lim_{(x,t) o(x_0,0^+)} u(x,t) = f(x_0).$$