Consider the heat equation $u_t = u_{xx}$ on half line x>0 and t>0, with the boundary condition $u_x(0,t) = \alpha u(0,t), u_x(\infty,t) = 0$ for t>0, and initial condition u(x,0)=f(x). Here, α is constant and f is smooth function with $f(\infty) = f_x(\infty) = 0$. Use heat kernel to construct solution.

在無限區間 $-\infty < x < \infty$ 的情況下,熱方程的基本解(熱核)為:

$$K(x,t)=rac{1}{\sqrt{4\pi t}}e^{-x^2/4t}$$

對於無邊界限制的問題,解的基本形式是與初始條件的卷積:

$$egin{aligned} u(x,t) &= \int_{-\infty}^{\infty} K(x-y,t) f(y) \, dy \ &= rac{1}{\sqrt{4\pi t}} \int_{-\infty}^{\infty} e^{-(x-y)^2/4t} f(y) \, dy. \end{aligned}$$

考慮 x>0

因為我們現在處理的是半無限區間 x>0,所以需要使用「鏡像法」(method of images) 來滿足邊界條件。

我們構造一個奇對稱延拓:

$$f_{
m ext}(x) = egin{cases} f(x), & x>0 \ -eta f(-x), & x<0 \end{cases}$$

其中 β 是一個待定係數。

對於此擴展函數,我們可以使用完整空間的熱核來求解:

$$u(x,t) = rac{1}{\sqrt{4\pi t}} \int_{-\infty}^{\infty} e^{-(x-y)^2/4t} f_{
m ext}(y) \, dy.$$

將 $f_{\text{ext}}(y)$ 展開:

$$u(x,t) = rac{1}{\sqrt{4\pi t}} \left[\int_0^\infty e^{-(x-y)^2/4t} f(y) \, dy - eta \int_0^\infty e^{-(x+y)^2/4t} f(y) \, dy
ight].$$

滿足邊界條件

$$u(0,t) = \alpha u_x(0,t).$$

代入 u(x,t) 的表達式,計算導數 $u_x(x,t)$ 並代入 x=0:

$$u_x(0,t) = rac{1}{\sqrt{4\pi t}} \left[\int_0^\infty rac{-(y)}{2t} e^{-y^2/4t} f(y) \, dy + eta \int_0^\infty rac{(y)}{2t} e^{-y^2/4t} f(y) \, dy
ight].$$

設 $I = \int_0^\infty e^{-y^2/4t} f(y) dy$ · 我們得到:

$$\frac{1-\beta}{\sqrt{4\pi t}}I = \alpha \cdot \frac{1+\beta}{\sqrt{4\pi t}}I.$$

整理得到:

$$1 - \beta = \alpha(1 + \beta).$$

解出
$$\beta = \frac{1-\alpha}{1+\alpha}$$

因此,滿足邊界條件的解為:

$$u(x,t) = rac{1}{\sqrt{4\pi t}} \left[\int_0^\infty e^{-(x-y)^2/4t} f(y) \, dy - rac{1-lpha}{1+lpha} \int_0^\infty e^{-(x+y)^2/4t} f(y) \, dy
ight].$$

Robin boundary condition

$$oxed{u(x,t) = \int_0^\infty \left[rac{e^{-rac{(x-y)^2}{4t}} + e^{-rac{(x+y)^2}{4t}}}{\sqrt{4\pi t}} - 2lpha e^{lpha(x+y) + lpha^2 t}\operatorname{erfc}\left(rac{x+y}{2\sqrt{t}} + lpha\sqrt{t}
ight)
ight]f(y)\,dy}}$$

1. Heat Kernel on Half-Line:

The standard heat kernel for the whole line is $G(x,y,t)=\frac{1}{\sqrt{4\pi t}}e^{-\frac{(x-y)^2}{4t}}$. For the half-line x>0, we use an image term at -y to satisfy boundary conditions.

2. Robin Boundary Condition Adjustment:

The Robin condition $u_x(0,t)=\alpha u(0,t)$ requires modifying the image method. The solution includes an additional term involving the complementary error function to account for the α -dependent flux.

3. Constructing the Solution:

The solution combines the direct heat kernel, its image, and a correction term ensuring the Robin condition is satisfied. The correction term uses the exponential factor $e^{\alpha(x+y)+\alpha^2t}$ and the complementary error function to handle the boundary interaction.

4. Verification of Boundary Condition:

Substituting x=0 into the constructed solution and differentiating confirms that $u_x(0,t)=\alpha u(0,t)$, adhering to the given boundary condition.