Consider the heat equation U, =U,, on half line x>0 and t>0 > with the boundary
condition U, (0,t) =au(0,t),u, (oo, t) =0 for t>0 > and initial condition u(x,0)=f(x) °
Here » « is constant and f is smooth function with f (o0) = f, (00) =0

Use heat kernel to construct solution °
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Robin boundary condition
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. Heat Kernel on Half-Line:

z—u)®
The standard heat kernel for the whole line is G(z, y,t) = ﬁe i For the half-line z > 0,

we use an image term at —y to satisfy boundary conditions.

2. Robin Boundary Condition Adjustment:

The Robin condition w, (0,t) = au(0, t) requires modifying the image method. The solution
includes an additional term involving the complementary error function to account for the «-

dependent flux.

3. Constructing the Solution:
The solution combines the direct heat kernel, its image, and a correction term ensuring the Robin
condition is satisfied. The correction term uses the exponential factor e®(* ¥+ *t and the

complementary error function to handle the boundary interaction.

. Verification of Boundary Condition:
Substituting = 0 into the constructed solution and differentiating confirms that u.(0,t) =

au(0,t), adhering to the given boundary condition.




