§Heat Equations

- 1.1 heat equation on R
- 1.2 I/B conditions
- 1.3 Diffusion (1)on R (2) R^3 (3)R^n heat flow
- 1.4 Separation of Variables
- 1.5 Examples
- § 1.1 Heat Equation on R

(1)
$$u_t - ku_{xx} = 0$$
 The fundamental solution of is $G(x,t) = \frac{1}{\sqrt{4\pi kt}} e^{\frac{-x^2}{4kt}}$

(2)
$$\begin{cases} u_t - ku_{xx} = f(x,t), t > 0 \\ u|_{t=0} = g(x) \end{cases}$$

The constant k is called the thermal diffusivity •

The particular solution is given by

$$u(x,t) = \int_{-\infty}^{\infty} G(x-y,t)g(y)dy + \int_{0}^{t} \int_{-\infty}^{\infty} G(x-y,t-s)f(y,s)dyds$$

(3) initial/boundary value problem on an interval I in R

$$\begin{cases} u_t = ku_{xx} \\ u(x,0) = \phi(x) \end{cases}$$
, u satisfies certain boundary conditions ...

- 1. Dirichlet boundary condition 'where the end is held at a prescribed temperature ° For example ' $u(a,t) = \alpha(t)$ fixes the temperature(psooibly time-varying) at the left end °
- 2. Neumamm boundary condition $\frac{\partial u}{\partial x}(a,t) = \mu(t)$
- 3. Robin boundary condition $\frac{\partial u}{\partial x}(a,t) + \beta(t)u(a,t) = \tau(t)$

Each end of the bar is required to satisfy one of these boundary conditions •

4. Periodic boundary conditions

$$u(a,t) = u(b,t), \frac{\partial u}{\partial x}(a,t) = \frac{\partial u}{\partial x}(b,t)$$

§ Examples

k=1,
$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$
 以下(1)(2)(3)都是解

(1)
$$u(t, x) = t + \frac{1}{2}x^2$$

(2)
$$u(t,x) = \frac{e^{\frac{-x^2}{4t}}}{\sqrt{4\pi t}}$$

(3)
$$u(t, x) = e^{-t+ix} = e^{-t}(\cos x + i\sin x)$$

§ 1.3.1 Diffusion

Consider a liquid in which a dye(染料)is being diffused through the liquid。

The dye will move from higher concentration to lower concentration •

Let u(x,t) be the concentration (濃度 mass per unit length) of the dye at positin x in the pipe at time t \circ

The total mass of dye in the pipe from x_0 to x_1 at time t is given by

$$M(t) = \int_{x_0}^{x_1} u(x,t) dx \quad \text{therefore} \quad \frac{dM}{dt} = \int_{x_0}^{x_1} u_t(x,t) dx$$

By Fick's law,
$$\frac{dM}{dt}$$
 = flow in - flow out= $ku_x(x_1,t) - ku_x(x_0,t)$, where k>0

$$\int_{x_0}^{x_1} u_t(x,t) dx = ku_t(x_1,t) - ku_t(x_o,t) \quad \text{ifferentiating with repect to} \quad x_1 \quad \text{we have}$$

$$u_t(x_1, t) = ku_{xx}(x_1, t)$$
 or $u_t = ku_{xx}$

§ 1.3.2 推導 Heat equation
$$\frac{\partial u}{\partial t} = \Delta u$$
 Jean le Rond d' Alembert 1746

A body occupying a volume R with surface S

Heat capacity c

Density of matter ρ

Absolute temperature T posseses a source of heat of intensity q

$$Q = \iiint_{R} \rho c T dx dy dz$$
 the amount of heat Q inside R

$$V = -KgradT$$
 , K>0

$$\frac{dQ}{dt} = -\int_S V_n d\Sigma + \int_R q dx dy dz \quad , \text{ the amount of heat passing through S in unit time}$$

$$V_{n} = -K \frac{\partial T}{\partial n}$$

$$\iiint \frac{\partial}{\partial r} (\rho c T) dx dy dx$$

$$\iiint_{R} \frac{\partial}{\partial t} (\rho cT) dx dy dz = \iint_{S} K \frac{\partial T}{\partial n} d\Sigma + \iiint_{R} q dx dy dz ,$$

where $\iint_{S} K \frac{\partial T}{\partial n} d\Sigma = \iiint_{R} -divV dx dy dz$ (divergence theorem)

$$\frac{\partial}{\partial t}(\rho cT) = q - divV = q + \frac{\partial}{\partial x}(K\frac{\partial T}{\partial x}) + \frac{\partial}{\partial y}(K\frac{\partial T}{\partial y}) + \frac{\partial}{\partial z}(K\frac{\partial T}{\partial z})$$

$$\frac{\partial T}{\partial t} = a^2 \Delta T$$
, if ρ, c, K are constant and q=0

§ 1.3.3 heat flow

D is a region in \mathbb{R}^n , $x = (x_1, x_2, ..., x_n)$ is a vector \circ

u(x,t) is the temperature at point x, time t

Let H(t) be the total amount of heat contained in D,

c be the specific heat of the material ρ its desity of the material ρ

$$H(t) = \int_{D} c \rho u(x, t) dx$$

Fourier's law: heats flows from hot to cold region at a rate $\kappa>0$ proportional to the temperature gradient °

$$u(x,t) = -\kappa(x) \frac{\partial u}{\partial t}$$
 is known as Fourier's Law of Cooling •

 $\kappa(x) > 0$ is the thermal conductivity of the bar at position x \circ

The only way heat will leave D is through the boundary •

$$\frac{dH}{dt} = \int_{D} c \rho u_{t}(x, t) dx = \int_{\partial D} \kappa \nabla u \cdot n dS$$

Where n is the outward unit vector to ∂D

dS: surface measure over ∂D

Divergence theorem:

$$\int_{\partial D} F \cdot ndS = \int_{D} \nabla \cdot F dx$$

$$\therefore \int_{\partial D} c \rho u_t(x, t) dx = \int \nabla \cdot (\kappa \nabla u) dx$$

$$c\rho u_{t} = \nabla \cdot (\kappa \nabla u)$$
, $u_{t} = k\Delta u$ where $k = \frac{\kappa}{c\rho} > 0, \Delta u = \sum_{i} u_{x_{i}x_{i}}$

§ 1.4 Separation of Variables

$$u_t - ku_{xx} = 0$$

Let u(x,t)=X(x)T(t) , then
$$XT'-kX''T=0$$
 , $\frac{T'}{kT}=\frac{X''}{X}=-\lambda$

$$rac{T'}{kT} = -\lambda, rac{X''}{X} = -\lambda$$
 ,稱為 eigenvalue problem

§ 1.2.1

Example 1 Dirichlet boundary coditions

$$\begin{cases} X'' = -\lambda X & 0 < x < l \\ X(0) = X(l) = 0 \end{cases}$$

$$X'' = -\lambda X$$
 分別對 $(1)\lambda > 0$ $(2)\lambda = 0$ $(3)\lambda < 0$ 討論

$$egin{align} extbf{(1)} & \lambda=eta^2>0, then \, X(x)=C\coseta x+D\sineta x \ & X(0)=0\Rightarrow C=0 \ & X(l)=0\Rightarrow \sineta l=0, eta=rac{n\pi}{l}, n=1,2,3,\dots \ & We\, have \, \lambda_n=\left(rac{n\pi}{l}
ight)^2, X_n=D_n\sin\left(rac{n\pi x}{l}
ight) \ \end{aligned}$$

(2) For $\lambda = 0$ or $\lambda < 0$ there are no eigenvalues \circ

$$u_n(x,t) = T_n(t)X_n(x) = Ae^{-k\lambda t}\Big(D_n\sinrac{n\pi x}{l}\Big)$$

$$u(x,t) = \sum_{n=1}^{\infty} u_n(x,t)$$
 is the solution which satisfies the boundary condition

Example 2

(Periodic Boundary Conditions) Find all solutions to the eigenvalue problem

$$\begin{cases} -X'' = \lambda X & -l < x < l \\ X(-l) = X(l), \ X'(-l) = X'(l). \end{cases}$$
 (2.5)

The solutions are

$$\lambda_n = \left(\frac{n\pi}{l}\right)^2 \qquad X_n(x) = C_n \cos\left(\frac{n\pi}{l}x\right) + D_n \sin\left(\frac{n\pi}{l}x\right) \qquad n = 1, 2, \dots$$
$$\lambda_0 = 0 \qquad X_0(x) = C_0.$$

§ 1.2.2 For initial conditions

Cauchy problem for $egin{cases} u_t = a^2 u_{xx} \ u_{t=0} = arphi(x) \, is \, a \, contuous \, bounded \, function \end{cases}$

$$\text{Then} \quad u(x,t) = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{\infty} \varphi(\xi) \exp\left(-\frac{(\xi-x)^2}{4a^2t}\right) d\xi \quad \text{for t>0} \\ \lim_{t\to 0} u(x,t) = \varphi(x)$$

以下用分離變數法

$$X=A\cos\lambda x+B\sin\lambda x, T=\exp\left(-a^2\lambda^2t
ight)$$
 $u_\lambda(x,t)=\exp\left(-a^2\lambda^2t
ight)(A(\lambda)\cos\lambda x+B(\lambda)\sin\lambda x)$ is a solution t^∞

So is
$$\int_{-\infty}^\infty u_\lambda(x,t), arphi(x)=\int_{-\infty}^\infty (A(\lambda)\cos\lambda x+B(\lambda)\sin\lambda x)d\lambda$$

Since $\varphi(x)$ is ontinuous and bounded \cdot it gas a Fourier Integral representation ...

(1)
$$u_t - ku_{xx} = 0$$
 The fundamental solution of is $G(x,t) = \frac{1}{\sqrt{4\pi kt}} e^{\frac{-x^2}{4kt}}$

(2)
$$\begin{cases} u_t - ku_{xx} = f(x,t), t > 0 \\ u|_{t=0} = g(x) \end{cases}$$

The particular solution is given by

$$u(x,t) = \int_{-\infty}^{\infty} G(x-y,t)g(y)dy + \int_{0}^{t} \int_{-\infty}^{\infty} G(x-y,t-s)f(y,s)dyds$$

§ 1.5 Example Justin Ko W5

1.
$$egin{cases} u_t = k u_{xx} & t > 0 \ u(x,0) = x \end{cases}$$

$$u(x,t)=rac{1}{\sqrt{4\pi kt}}\int_{-\infty}^{\infty}e^{rac{-(y-x)^2}{4kt}}ydy$$

$$=rac{1}{\sqrt{4\pi kt}}\int_{-\infty}^{\infty}(y-x)e^{rac{-(y-x)^2}{4kt}}dy+rac{x}{\sqrt{4\pi kt}}\int_{-\infty}^{\infty}e^{rac{-\left(y-x0^2
ight)}{4kt}}dy=x$$

前一項 奇函數積分=0。

Normal distribution

$$f(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}\left(rac{x-\mu}{\sigma}
ight)^2}$$
 is the probability density function

後一項 積分值=x

2.
$$\begin{cases} u_t = ku_{xx} & t>0 \ u(x,0) = x^2 \end{cases}$$

$$u(x,t)=rac{1}{\sqrt{4\pi kt}}\int_{-\infty}^{\infty}e^{rac{-(y-x)^2}{4kt}}y^2dy$$

Let
$$p=rac{y-x}{\sqrt{4kt}}, dp=rac{dy}{\sqrt{4kt}}$$
 , $rac{1}{\sqrt{\pi}}\int_{-\infty}^{\infty}e^{-p^2}dp=1, \int_{-\infty}^{\infty}pe^{-p^2}dp=0$

$$=rac{1}{\sqrt{\pi}}\int_{-\infty}^{\infty}\left(x+\sqrt{4kt}p
ight)^{2}e^{-p^{2}}dp=\ldots=x^{2}+kt$$

$$\begin{cases} u_{t}-ku_{xx}=x^{2}, t>0\\ u\big|_{t=0}=0 \end{cases}$$
 3.
$$\exists \mu = 0$$

$$u(x,t) = \int_{0}^{t} \int_{-\infty}^{\infty} \frac{1}{\sqrt{4\pi k(t-s)}} \exp\left(\frac{-(x-y)^{2}}{4\pi(t-s)}\right) y^{2} dy ds$$

$$\frac{1}{\sqrt{4\pi k(t-s)}} \int_{-\infty}^{\infty} e^{\frac{-(y-x)^{2}}{4k(t-s)}} y^{2} dy = x^{2} + 2k(t-s)$$

$$u(x,t) = \int_{0}^{t} x^{2} + 2k(t-s) ds = x^{2}t + kt^{2}$$

4.