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§ 1.1 Heat Equation on R
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(1)u, —ku,, =0 The fundamental solution of is G(x,t) =

" {ut —ku, = f(x1),t>0
u|t:0=g(x)

The constant k is called the thermal diffusivity °

The particular solution is given by

u(x,t) = I:OG(X— y,t)g(y)dy+f$f:G(x— y,t—s) f(y,s)dyds

(3) initial/boundary value problem on an interval I in R

u, =ku,,
u(x,0) =¢(x) - usatisfies certain boundary conditions

1. Dirichlet boundary condition > where the end 1s held at a prescribed temperature °
For example > u(a,t) = a(t) fixes the temperature(psooibly time-varying) at the left

end °

» ou
2. Neumamm boundary condition * &(a,t) = u(t)

3. Robin boundary condition ° Z—:j( (a,t)+ p(t)u(a,t) =z(t)

Each end of the bar 1s required to satisfy one of these boundary conditions
4.  Periodic boundary conditions

u(a,t) = u(b,t),g—i(a,t) =%(b,t)



§ Examples
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(1)u(t,x)=t+%x2
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(3)u(t,x) =e ™ =e™*(cos x+isin x)

2)u(t,x) =

§ 1.3.1 Diffusion

Consider a liquid in which a dye(F4h)is being diffused through the liquid °

The dye will move from higher concentration to lower concentration ©

Let u(x,t) be the concentration G mass per unit length) of the dye at positin x in the
pipe at time t °

The total mass of dye in the pipe from X, to X attime tis given by

dm X
M (©) = [} u(ct)ox  thercfore ~2- = [ (x. e

, M
By Fick slaw d

ral flow in - flow out=Kku, (X,,t) —ku, (X,,t) > where k>0

I X:l u, (X, t)dx = ku, (x,,t) —ku, (X,,t) - differentiating with repect to X, > we have

U (%, 1) =ku,, (%, 1) or u, =ku,

\ B ,
$ 1.3.2 HE2 Heat equation EuzAu Jeanle Rond & Alembert 1746

A body occupying a volume R with surface S

Heat capacity ¢

Density of matter p

Absolute temperature T posseses a source of heat of intensity q

Q= ”_[ pcTdxdydz the amount of heat Q inside R
R

V =—KgradT > K>0

d : .
d—? =— I S V, dXZ+ .[R qdxdydz - the amount of heat passing through S in unit time
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{112 (peTydxdydz = [[ i - dx + [[] adeaydz -
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where Isj K aa—:; dx = I{J‘ —divVdxdydz (divergence theorem)

o . 0
—(pcT)=q-divW =qg+—(K
P =a-awW =ar o (K2 (K5
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i a’AT »if p,c,K are constant and q=0

§ 1.3.3 heat flow
Disaregionin R" » X=(X,X,,..., X,) 1S a vector °

u(x,t) 1s the temperature at point x » time t
Let H(t) be the total amount of heat contained in D »
¢ be the specific heat of the material > o 1ts desity of the material °

H(t) = jD cpu(x,t)dx

Fourier’ s law : heats flows from hot to cold region at a rate & >0 proportional to the
temperature gradient °

u(x,t) = _K(X)Zt_u is known as Fourier' s Law of Cooling °

x(X) >0 1is the thermal conductivity of the bar at position x °
The only way heat will leave D 1s through the boundary °

dH

o ID cpu, (x,t)dx = J'SD KVu-ndS

Where n is the outward unit vector to oD

dS : surface measure over oD

Divergence theorem -

LDF-ndsszv-Fdx

LD cpu, (x,t)dx = _[V -(kVu)dx

_ K

cpu, =V-(kVu) > U, =kAu where k=—>0,Au ZZUX.X.
Cp I 1M



§ 1.4 Separation of Variables

u, —ku, =0
Tl _ XU _ _A
Let u(x,t)=X(x)T(t) > then x7’ —kx"T—0 > kT =~ X
T _ Xy
kT VX 7 fEFy eigenvalue problem
§ 1.2.1
Example 1 Dirichlet boundary coditions
X" = -AX 0<z<l
X(0) = X(1) =0
X" — —AX AYRPEHDA>0(2A=03)A <0 =fzh
(1) A= 2> 0,then X(z) = Ccos Bz + Dsin Sz
X(0)=0=C=0
X(I)=0=sinfl = 0,8 — %,n: 1,2,3,...
ny 2 i nwx
Wehave A, = (T) , Xp = Dy sin (T)
(2) For A =00ra <0 there are no eigenvalues °
un(ﬂi,t) = T,](t)Xﬂ(ﬂ’:) = Ae * (Dn sin nﬂ_w)
u(z,t) = Zun(:c,t)
n=1 is the solution which satisfies the boundary condition

Example 2

(Periodic Boundary Conditions) Find all solutions to the eigenvalue problem

- X"=AX —l<x<l
{ <r< (2.5)

X(=)=X(), X'(=I)=X"(1).
The solutions are

nm 2 ni 7
A, = (%) X, (x) = C, cos (?J’) + D, sin (?:L‘) n=12 ...

A=0 Xo(z) = Cy.

§ 1.2.2 For initial conditions

U — a2um
Cauchy problem for |- = w(z) is a contuous bounded function

I (SN
u(z, t) = p(&) exp ( )d{
Then 2av'mt f—m da’t for t>0

limu(z,t) = p(z)
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X = Acos Az + Bsin Az, T = exp (—az)ﬁt)
uy(z,t) = exp (—a®N’t) (A(A) cos Az + B(A) sin Az) is a solution

So is _/Oo ux(z,t), p(x) = /.OO (A(A) cos Az + B(A) sin Az)dA

Since ¢(z) is ontinuous and bounded - it gas a Fourier Integral representarion ...

(1)u, —ku,, =0 The fundamental solution of is G(x,t) =

(2){ut —ku, = f(x1),t>0
u|t:0: 9(x)

The particular solution is given by

u(x,t) = JiG(x— y,t)g(y)dy+f;f:G(x— y,t—s)f(y,s)dyds

§ 1.5 Example  Justin Ko W5

u; = kug, t>0
1. lu(z,0)==

u(z,t) =

v dwkt

—:t?ze(dxM dy + z [mewdy—m
\/47rk Vdrkt J-

Hil—IH mkﬁl%ﬁﬁ%ﬂ °

Normal distribution

fla) = ——e 1) . . .
oy/2m is the probability density function

t&—IH TR {E=x

U = Klgs t>0
2 u(z,0) = 2?

e 4i.r y dy

u(z,t) =

Vdmkt

— T dy 1 i 2 = 5
p= ,dp = — e Pdp = l,f pe Pdp=20
Let v4k . 4kt VT oo —o0
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{ut —ku, =x*t>0
3. gl U0
_(m—_i);)yzdyds

t oo 1
et = fo f_w VA=) ¥ ( an(t -
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e ydy = x* 4 2k(t — s)
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4/ 47Tk(t — 5) —00
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u(z,t) = f 2 + 2k(t — 8)ds = 2t + kt?
0
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