§ Linear and nonlinear Waves Peter J. Olver Ch2
2.4 The Wave Equations
External Forcing and Resonance(FE1E 2E4R)

Y B 15 F2 (wave equation)
§ vibrating string
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The displacement and slop of the string
are assumed very small everywhere °



O(x + h) Tension forces depend on angles

0(x) 0(x),0(x +h) at the ends of a bit of the
string °
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The forces in the (x,u)plane acting on the piece of the string at x and x+h are
—T (cos 8(x),sin 8(x)), T (cos B(x + h),sin B(x + h))
We consider the motion of the string only in the u direction -
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Total force=mass times acceleration=hWu,, > where hW is th mass ©
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§ Solution

(1) ﬁﬁ:é_/\ utt _CZUXX :O

u, —c’u, = f(x,t),xeR,t>0
(2) Ul =9(x),xeR
U] o=h(x),xeR

(1) HY—fEfE u(t, x) = g(X —ct) + (X +ct)
Brook Taylor 1714
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_g(x+cet)+g(x—ct) 1 pua 1t prees)
u(t, x) = . oo jt h(s)ds+— jo jH(H) f(y,s)dyds
By d'Alembert 1746

it is the superposition of two waves moving with speed ¢ in opposite directions.

The information provided by the initial data propagates along the characteristics
X &£ ¢t = constant.

In particular, the solution at the point (x, ) depends only on the value of / on the entire
interval [x — ct, x + ct] and those of g at the endpoints.



* Global Cauchy problem (n = 2). In dimension n > 2 the global Cauchy problem
reads

Uy —C2Au =0 xeR"t>0
u(x,0)=g(x), u;(x,0)=h(x) x € R”,

Ifn =3,g € C3(R3) and h € C%(R?), then the only C? solution on R? x [0, +00) is
provided by Kirchhoff’s formula

d 1 1
ot | 4wzt j glo)do | + 42t f h(@)do.

{lx—0o|=ct} {lx—a|=ct}

u(x,t) =

Incasen =2,g € C? (R2) and h € C? (]RZ), the only C? solution on R2 x [0, 4-00) is
determined by Poisson’s formula

1
H(X,f) = m

9 f g(y) dy h(y) dy
ar

—|x—y| 22— |x—y

{Ix—yl=cr} {Ix—yl=ct}

* Domain dependence. For n = 3, Kirchhoff’s formula shows that u (x, t) depends
only on the values of the data assumed on the sphere

{or cR?: |x—ar|:ct}.

In dimension n = 2, the solution at (X, ) depends on the values of the data assumed on
the disc

{yeR2:|x—y| ch}.
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§ EERLK

Michael Faraday 1791-1867

James Clerk Maxwell 1831-1879

Heinrich Hertz 1857-1894 1887 4R ER

§ JBP 2 o (275U Betelgeuse)

I_i Walter A. Strauss

u Cu,, = J (:8 8+c'8 u=>~0
. 7 \ar ax)\ar  ax) T

For a transport equation U, +cu, =0 > the general solution is u(t, X) = ¢(x —ct)

Let v = u; + cu, then

vy — cvy = 0 = v(x,t) = h(z + ct)
u; + cu, = v = h(z + ct)

the homogeneous solution of Ut + Ctz =0 = u(z,t) = g(z — ct)

for a particular solution,let u(x,t)=f(x+ct) then

U + cuy = cﬁ —|—cg,where§ =z +ct = h(z —ct) f(s) = @

a9 0¢ 2¢
— = EL R fif+ s i
u(x,t)=g(x-ct)+f(x+ct)
Sl AR ¢=rtetn=a—ct
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Oy — 0, = —2c8,,0; + 8, = 2¢O,

(8 — €0,) (s + By )u = (—2¢0¢)(2¢8,)u = uy — Uz, =0
Which means that “& =0

The solution of the transformed equation is « = (&) + g(n)

The wave equation has a nice simple geometry. There are two families
of characteristic lines, x &= ¢t = constant, as indicated in Figure 1. The most
general solution 1s the sum of two functions. One, g(x — ct), 1s a wave of
arbitrary shape traveling to the right at speed c. The other, f(x 4+ ct), 1s another
shape traveling to the left at speed ¢. A “movie” of g(x — ct) is sketched in
Figure 1 of Section 1.3.



Figure 1
SRR A
u, =c’,,0<x<l,t>0
1. u(0,t)=u(l,t)=0,t>0

u(x,0) = f(x),u,(x,0)=g(x),0<x <l

2 u(x,t)=X(x)T(t) Hju, =X)T"(),u, =X"(X)T(t)

X"(x) _T"(@) _
X(x)  cT()

X ()T "(t) = X "(X)T(t) or

X"=AX,T"=Ac’T KU HIHERE 1<0 > 2 1=—0"

X = Acos wx + Bsin wx

T =Ccoscat + Dsincat
u(x,t) = X(X)T (t) = (Acos wx + Bsin wx)(C coscat + D sincat)

R ETE) =0

AL X(0)=A=0,X(1)=Bsinwl =0 » B%0
w:%zm:Lzam

u, (x,t) =(C, cosTt+D smTt)sm@ ' n=1,2,3,..

u(x,t) = Zu _Z(C cos—t+D sm—t)sm@

u(x,0) = ZC smT— f(x) =C, :—J: f(x)sin%x n=1,2,3,...

u, (x,0) = Z D, x n?—ﬂsmnli =g(x) =D, —LJ‘OI g(x)sin %x n=1,2,3,...
Cr

u(0,t)=u(l,t)=0 means that the string with tied ends -

Suppose u is of the form u(x,t)=f(x-ct)+g(c+ct) and satisfies the boundary condition -
The boundary conditions state that f(-ct)+g(ct)=0 > f(l—ct)+g(l+ct)=0



Denoting ct as x, the first relation says that f(—x) = —g(x). Setting this into the
second relation we get
—g(x—a)+g(x+a)=0.

Denoting x —a as y we rewrite this as

g(y+2a) = g(y).
In words: g is a periodic function with period 2a.

Since f(y) = —g(—y), it follows that also f is periodic with period 2a. Therefore
u(x,1) = f(x—ct)+g(x+ct) is a periodic function of r with period 2{—"
A function with period p also has periods 2p, 3 p, and so forth. Thus a string that

vibrates with period ZL—” also vibrates with period 2?” , n any whole number.

2. DUTERE Uy =4U,, A

(1) cos(x-2t)

(2) ex+2t

(3) X®+2xt +4t?
(4) 4t> —x*

(5) Cos(x+2t)

(6) Sin2tcosx

(7) ef(X72t)2

=l

w Initial-value problem : Walter A. Strauss
U = Uy, —00 < T < 00

u(z,0) = ¢(x)

u(z,0) = ¥(x)

x+ct

1 1
ux,t) = E[qb(x +ct)+p(x —ct)] + % f Y(s)ds.

x—ct

Is a bona fide(ELE A 1Y) solution of this IVP -
Due to d' Alembert 1746



= Examples

1. U = gy, —00 < T < 00
u(z,0) =0
uy(x,0) = cosz

1 x+ct 1 )
u(x,t) = e cos zdx = zcoswsmct

—ct

2. The plucked string (S E/Z 2V 5H22)  p.36

3. Pinched string(¥£ %A% 1)

A guitar (initially at rest)is pinchedat the midpoint and releared -

Denoting the string density by 2 and the tension by 7 > formulate the
mathematical model and write the solution as superposition of standing wave °

Solution. Let L be the string length and suppose that the string at rest lies along the
x-axis between 0 and L. Denote by u(x, t) the displacement from the rest position of the
point x at time 7, and let @ be the initial displacement of x = L /2. The initial configuration
of the string, once it is pinched in the middle, is described by the function

2ax/L 0<x<L)2

2a L
g(x):a——‘x——\:{
L 2 2a(L—-x)/L LJ/2<x<L.

If a is small with respect to the length and we ignore the string weight, u solves
Ui — Czuxx =0

where ¢ = /t/p is the travelling speed of waves along the string. The fixed endpoints
impose homogeneous Dirichlet conditions at the boundary of the interval, while the initial
rest status means that the initial velocity is zero. All this gives the following model:

Ust — CPUyy = 0 O<x<L,t>0
u(0,t) =u(L,t) =0 t=0
u(x,0) = g(x), u;(x,0) =0 0<x<L.

PDE in Action by Gianmaria Verzini p.219

u(x,t) =

8a €% (=1 cn@h+1) \ . (@h+Dr
Fh=omcos T sin T)C .



Problem 4.2.2 (Reflection of waves). Consider the problem

Ust — C2Uyy =0 O<x<L,t>0
u(x,0) = g(x), u(x,00=0 0<x<1L
u(0,t)=u(L,t)=0 t=0.

a) Define suitably the datum g outside the interval [0, L], and use d’Alembert’s for-
mula to represent the solution as superposition of traveling waves.

b) Examine the physical meaning of the result and the relationship with the method of
separation of variables.

Problem 4.2.3 (Equipartition of energy). Let u denote the solution to the following
global Cauchy problem for the vibrating string:

pupy —Tuxx =0 xeR, >0
u(x,0) = g(x) xeR
us(x,0)=h(x) xeR.

Assume g and h are regular functions that vanish outside a compact interval [a, b].
Prove that after a sufficiently long time T

Ecin(t) = Eppt(t) foranyt = T.

Problem 4.2.4 (Global Cauchy problem — impulses). Find the formal solution to the

problem
Uy —CUyy =0 xeR, t>0

u(x,0) = g(x) xeR
ur(x,0) =h(x) xelR
with the following initial data:
a) g(x) =1if|x| <a,g(x)=0if|x]| >a;h(x) =0.
b) g(x) =0;h(x) =1if|x| <a, h(x) =0if |x| > a.



Problem 4.2.5 (Forced vibrations). Consider the problem
Uy —Uxx = f(Xx,1) O<x<L,t>0
ux,0)=u;(x.0)=0 0<x<1L (4.9)
u(0,1) =u(L,t) =0 =0,

with f € C3([0, L] x [0,400)) and f(0.1) = f(L.t) = frx(0.t) = frx(L.1) for

anyt = 0.

a) Solve the problem by the separation of variables. Show that the expression found is

the only classical solution.

b) Study in detail the case

f(x.1) = g(t) sin (’l—x)

Problem 4.2.6 (Semi-infinite string with fixed end). Consider the problem

Uy —CPUyy =0 x>0,t>0
u(x,0) = g(x), us(x,0) =h(x) x=0
u(0,1) =0 =0,

with g, h regular, g(0) = 0.

a) Extend suitably the initial data to R and use d’Alembert’s formula to write a repre-
sentation formula for the solution.

b) Interpret the solution in the case h(x) = 0 and

2(x) = {cos(x—4) |x — 4] < %

otherwise.

Problem 4.2.7 (Forced vibrations of a semi-infinite string). A semi-infinite string is
initially at rest along the axis x > 0, and fixed at x = 0. An external force f = f(t)
sets it in motion.

a) Write the mathematical model governing the vibrations.

b) Solve the problem using the Laplace transform in t, assuming that the transform of
u is bounded as s tends to +oo.
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Problem 4.2.8 (Vibrations of a hanging chain). In this problem we shall find the
equation governing the small (plane) vibrations of a hanging chain of length L. Call
u = u(x,t) the displacement from the horizontal position and p the linear density of
mass (a constant). Let us assume that the chain is completely flexible (that is, no resis-
tance to deformations) and that the oscillations are only transverse (the chain moves
on a vertical plane).

a) Denote by T(x + Ax) and 7 (x) the tensions at points x + Ax and x relatively to
some small interval (x, x + A x) on the chain; these tensions are the forces acting on
that portion of chain from below and above respectively. Argue as for the vibrating
string and show that, up to first order approximation,

lT(x)| = t(x) = pgx

(where g is the acceleration of gravity).

b) Show that small vibrations are governed by the equation

Uy = g(xuxx + ux)-

10.
Problem 4.2.9 (Hanging chain — separation of variables). In relation to the previous
problem solve (by separation of variables)
M;rzg(xuxx'i'ux) O<x<L,1>0
u(x,0) = f(x), us(x,0) =h(x) 0<x<L
u(L,t) =0, |u(0,1)| bounded t = 0.
11.
Problem 4.2.10 (Sound waves in a pipe). Let Py, P, be two identical, cylindrical organ
pipes of length L. Assume that its axis is the segment [0, L] along the z-direction. Pipe
P, is stopped (closed) at z = 0 and open at z = L, whereas P, is open at both ends.
Pressing a key makes pressurised air move through the pipes. Which pipe produces
12 the note of higher pitch (i.e., higher frequency)?
u, —4u, =0,t>0
ul,,=tanh(x),xeR
13, i U | .o =arctan(x),x e R
tanh(x + 2t) + tanh(x—2t) 1 px+2
u(x,t) = = (x+20) > anh(x - 2t) +Z.[Xz: arctan(y)dy

10



X+ —X . X _ X 2)(_1
coshx:e € ,smhx:u,tanhx:eM_
2 e’ +1
X
J.tan’1 xdx = xtan’lx—j - dx
1+Xx
1
Where u=tan‘lx,V=X,Iudv=uv—Ivdu ) du: .
dx 1+Xx

X
1+ x°

Itan’lxdx:xtan’lx—f dx:xtan’lx—lln‘1+x2‘+c
2

2t
)yt =

1 X+2t 1 _1 1 1 2
Then ZJ'Ht tan ydy_z(ytan y—zln‘1+y

u, —4u, = f(xt),t>0
u|t:0=g(x)

U] =h(x) Cfix t):{sinx,0<t<7r
, Ot>n

14. f#

15. Find a solution of each problem in the form u(x,t)=f(x-ct)+g(x+ct)

(@) uy — iy, = 0 with u(x,0) = sinx and u,(x,0) = 0.
(b) uy —uy =0 with u(x,0) = 0 and u,(x,0) = cos(2x).
(c) uy —25u,, = 0 with u(x,0) = 3sinx + sin(3x) and 1,(x,0) = cos(2x).

16. Verify that every function of the form u(x,t)=f(x-ct)+g(x+ct) where f and g are

twice differentiable functions of a single variable - is a solution of

u, —c’u, =0

XX

Exerises 2.1 The Wave Equation ~ Walter A. Strauss

1. Solve u;; = .y, u(x,0)=e¢e", u;(x,0) =sinx.
Uy = gy, —00 < 2 < 00 u(z,0) = d(z) wlz,0) = p(z)

x+ct

1 1
ux,t) = E[qzﬁ(,vr +ct)+p(x —ct)] + % f Y(s)ds.

x—ct

11

11
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1
coshy = ——— .. u(z,t) =e" coshet + —sinzsinect
2 the solution is (2,2) c

2. Solve u, = c*uyy, u(x,0) =log(l + x?), u,(x,0) =4 + x.

u(z,t) = %{ln [1 + (2 + ct)Q} +1n {1 + (z — ct)2] } + 5t

3. The midpoint of a piano string of tension 7', density p. and length / 1s hit
by a hammer whose head diameter is 2a. A flea is sitting at a distance
[/4 from one end. (Assume that a < //4; otherwise, poor flea!) How long
does it take for the disturbance to reach the flea?

(-

4. Justify the conclusion at the beginning of Section 2.1 that every solution
of the wave equation has the form f(x + cr) + g(x — ct).

7. If both ¢ and ¢ are odd functions of x, show that the solution u(x, 1) of
the wave equation 1s also odd 1n x for all 7.

9. Solve uy, — 3uy; —4u, =0, u(x,0) = x2, u,(x,0) =e". (Hint: Fac-
tor the operator as we did for the wave equation.)

By (0x —48:)(0z + 8:)u = 0> we know that u (x,t)=f(4x+t)+g(x-t) is the general
solution -

(It 18 easy to check that both u(x,t )=f(4x+t) and u(x,t)=g(x-t) are solutions of the PDE -
Let v = ug + w then V= — 4v = 0 = v(z,t) = ¢(4x +t)

Uy +up = p(dx + 1)

The honogeneous solution 18 u(x,t)=g(x-t)

12
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Let u(x,t)=f(4x+t) be the particular solutin * then

, 1
wp - ur — AF(€) + £1(6) = $(6),6 =z +5 , I (6 =g ()

ey - L

That is u (x,t)=f(4x+t)+g(x-t) with 1€ = 5 () )
f(4z) + g(z) = z* = 4f'(4z) + ¢ (z) = 2z
u(z,0) = f'(4z) — g'(z) = €”
{f'(4:c> = L(e" + 22)

d(z) = %(23; — 4e®)
Integrating both sides > we have
{%f(llm) = %ew + %a:2 + A’

g(z) = —2e*+ ta’ + B

4 4
flde) = —e" + —2® + A, A =44’

5 5 » with A+B=0
_4 T é 2 _ ! _i z i £ 2
f(dz) = Fe +5:c +A,A=4A"= f(z) = 5e4+ 5(4) +A

4 ¢ 1
u(z,t) = fde +t) + gl —t) = B (e”? - ezft) + 2? + —t?

Then 4

10. Solve uyy + uyy —20u; =0, u(x,0) =¢(x), wu(x,0)=(x).
11. Find the general solution of 3u,, + 10u,, 4+ 3u,, = sin(x 4+ ).

5. (The hammer blow) Let ¢(x) = 0 and ¥(x)=1 for |x| <a and
Y(x) = 0 for |x| = a. Sketch the string profile (u# versus x) at each of
the successive instants t = a/2c, a/c, 3a/2c, 2a/c, and Sa/c. [Hint:
Calculate

] x+ct 1

u(x,t) = — Y(s)ds = —{length of (x — ct, x 4+ ct) N (—a, a)}.
2¢ ) 2c

Then u(x,a/2c) = (1/2¢) {length of (x —a/2, x + a/2)N(—a, a)}.
This takes on different values for |x| < a/2, for a/2 < x < 3a/2, and
for x > 3a/2. Continue in this manner for each case.]

13
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In Exercise 5, find the greatest displacement, max, u(x, ), as a function
of 1.

A spherical wave is a solution of the three-dimensional wave equation
of the form u(r, t), where r is the distance to the origin (the spherical
coordinate). The wave equation takes the form

2 . :
U, = c? (u,.r L —ur) (“spherical wave equation™).
’

(a) Change variables v = ru to get the equation for v: v, = v,y

(b) Solve for v using (3) and thereby solve the spherical wave equat-
ion.

(c) Use (8) to solve it with initial conditions u(r,0) = ¢(r),
u(r, 0) = ¥ (r), taking both ¢(r) and ¥ (r) to be even functions
of r.

Section 2.1

e* coshcet 4 (1/c)sinx sinct

(1/4 — a)/p/T)

4. Asinthetext,u, + cu, = h(x +ct). Letw = u — f(x — ct). Show that

w; + e¢w, = 0 and then find the form of w.

Let m(t) = max,u(x,t). Then m(t)=1t for 0<t <a/c, and
m(t) =aj/cfort = ajc.

D) u(r.t) =(1/r)[f(r +ct)+ g(r —ct)]

(c) (1,’2.")_[({ +cHp(r +ct)+ (r —ct)p(r — ct)} +

(1/2cr) j;j_tf sUr(s)ds

%(e.l'-l-rj'd- _ E.l.'—r) —|—,\‘2 + ifz

u= fQ3x —1t)+ gx —3r) — % sin(x + 1)

14
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§ 2.2 Causality([R5-F8{%) and Energy

PUs — Tuwa:

1
KE = Epf ulda

dKE o0
Tk pf UpupdT = Tf Uy dT = T[ urd(ug) = Turu, — Tf Uy U dT
—0o0
d 1
—— [ ZTWid
_at ) 2t
1 /' 9
PE=ZT [ vldz
Let 2 ,and E=KE+PE
dE 1 [oo 2 2
= _p9 E=—- pu;y +Tuy)dr
then dt ) 2 —oo( ! m) 18 independent of t °
Exercises

1. Use the energy conservation of the wave equation to prove that the only
solution with ¢ =0 and Y =0 1s u = 0. (Hint: Use the first vanishing
theorem in Section A.1.)

2. For a solution u(x, r) of the wave equation with p =T = ¢ = 1, the energy
density is defined as e = %(u% + uf) and the momentum density as p =
Uplty.

(a) Show that de/dr = dp/dx and dp/at = de/dx.
(b) Show that both e(x, ) and p(x, ) also satisfy the wave equation.

3. Show that the wave equation has the following invariance properties.
(a) Any translate u(x — y, t), where y is fixed, is also a solution.
(b) Any derivative, say u,, of a solution is also a solution.
(c) The dilated function u(ax, at) is also a solution, for any constant a.

4. 1If u(x, r) satisfies the wave equation u, = uy,, prove the identity
ux+h, t+b)y+ux—h,t—-k=ulx+k, t+h)4+ulx—%k,t—nh)

for all x, t, h, and k. Sketch the quadrilateral 0 whose vertices are the
arguments in the identity.

15
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For the damped string, equation (1.3.3), show that the energy decreases.

Prove that, among all possible dimensions, only in three dimensions can
one have distortionless spherical wave propagation with attenuation. This
means the following. A spherical wave in n-dimensional space satisfies

the PDE
5 n—1
Uy = ¢~ | Upp + - Ur |} .

where r is the spherical coordinate. Consider such a wave that has
the special form u(r, t) = a(r)f(t — B(r)), where a(r) is called the

attenuation and B(r) the delay. The question is whether such solutions
exist for “arbitrary” functions f.

(a) Plug the special form into the PDE to get an ODE for f.

(b) Set the coefficients of f”, f’, and f equal to zero.

(c) Solve the ODEs to see that n = 1 or n = 3 (unless u = 0).

(d) Ifn=1,show thatw(r)isaconstant (sothat “there is no attenuation™).

(T. Morley, American Mathematical Monthly, Vol. 27, pp. 69-71, 1985)
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