Introduction to Partial Differential Equations Peter J. Olver
Exercises
1.1. Classity each of the following differential equations as ordinary or partial, and equilibrium
or dynamic; then write down its order. (a) du +zu=1, (b) Ju +u Ou _ x
v ' 5 Y d:rg 72' ot dxr
du  0*u  Ou d“u  I°u 2 9
(¢) uy =9uyy, (d) 52@4‘%: (e) — @_W:I +y,
. d%u .
(f) pro) +3u=sint, (g) u,, +u,, +tu,, + (@® + 9%+ 22 =0, (h) Uy, =+ u?,
ou  0u du . 0%u &u

(1) o Toam Tl =0 () @-“m =u, (K) Uy = Upppp + Uy + Uy

1.2. In two space dimensions, the Laplacian is defined as the second-order partial differential
operator A = 832: + 63. Write out the following partial differential equations in (i) Leibniz
notation; (i¢) subscript notation: (a) the Laplace equation Au = 0; (b) the Poisson equa-
tion —Au = f; (¢) the two-dimensional heat equation d,u = Au; (d) the von Karman
plate equation A2y =0.

1.3. Answer Exercise 1.2 for the three-dimensional Laplacian A = 83 + (‘ﬂg + 63.

1.4. Tdentify the independent variables, the dependent variables, and the order of the following
systems of partial differential equations: (a) 3—; = 3—; , g—: =— % ;

du  Ov v u

(D) Upy +vyy =cos(z+Y), uyv, —uyvy, =1 (c) == 2 = 02

(d) u, +uwu, +vu, =p,, v Ftuv,+vv,=p, U, +v

(€) uy =vVppp +v(1—v), v =ty tvw, w, =u,+v,.

§ Initial conditions and boundary conditions

1.5. Show that the following functions u(z, y) define classical solutions to the two-dimensional

T . . .
Laplace equation D2 + @ = 0. Be careful to specify an appropriate domain.
(a) €"cosy, (b) L4a”—v’, (¢) 2*=3xy®, (d) log(a®+47). (¢) tan™"(v/x). (1) .
T4y

d
—tan'x=
© dx 2

+ X

1.6. Find all solutions u = f(r) of the two-dimensional Laplace equation u,, + Uy = 0 that
depend only on the radial coordinate r = /22 4 y2.

L.7. Find all (real) solutions to the two-dimensional Laplace equation u,, +u,, = 0 of the form
u = log p(x, y), where p(z,y) is a quadratic polynomial.



1.8.(a) Find all quadratic polynomial solutions of the three-dimensional Laplace equation

2 02 2
Q bu O (b) Find all the homogeneous cubic polynomial solutions.

— =1

Hx? * Ay? + 922
1.9. Find all polynomial solutions p(t, x) of the heat equation u; = u,, with degp < 3.

1.10. Show that each of the following functions u(t, z) is a solution to the wave equation
uy = du,,: (a) 4% — 22 (b) cos(z + 2t); (c) sin2tcosz; (d) e (@=20)°,

1.11. Find all polynomial solutions p(t, x) of the wave equation u;, = u,,, with
(a) degp <2, (b) degp=3.

1.12. Suppose u(t,z) and v(t, x) are C? functions defined on R? that satisfy the first-order sys-

tem of partial differential equations v, = v,, v, = u,.

(a) Show that both u and v are classical solutions to the wave equation u;; = w,,. Which
result from multivariable calculus do you need to justify the conclusion?

(b) Conversely, given a classical solution u(t, z) to the wave equation, can you construct a
function v(t, x) such that wu(t, z), v(¢,z) form a solution to the first-order system?

1.13. Find all solutions u = f(r) of the three-dimensional Laplace equation
Uy + Uy, +U,, = 0 that depend only on the radial coordinate r = V2 +y? 422,

1.14. Let u(z,y) be defined on a domain D C R Suppose you know that all its second-order
partial derivatives, u,,,, Upgys Uy s Uy ATE defined and continuous on all of D. Can you con-

clude that u € C%(D)?

1.15. Write down a partial differential equation that has
(a) no real solutions; (b) exactly one real solution; (¢) exactly two real solutions.

2 9
1.16. Let u(x,y) = my% for (x,y) # (0,0), while u(0,0) = 0. Prove that
YT 2
O%u %u

Explain why this example does not contradict the theorem on the equality of mixed partials.



§ Linear and nonlinear equations

1.17. Classify the following differential equations as either
() homogeneous linear; (i7) inhomogeneous linear; or (i) nonlinear:
(a) u, = :rgu-m +2xu,, (b) —uy, —u,, =sinu; (¢) u,, +2yu,, =3;

(d) u, +uu, =3u; (e) eu, =eu,: (f) u, =5uy,, +2%u+ .

1.18. Write down all possible solutions to the Laplace equation you can construct from the var-
ious solutions provided in Exercise 1.5 using linear superposition.

=4u

1.19.(a) Show that the following functions are solutions to the wave equation u,, .

(i) cos(z — 2t), (ii) =21 (iit) 22 +2xt + 42
(b) Write down at least four other solutions to the wave equation.

1.20. The displacement u(t, z) of a forced violin string is modeled by the partial differential
equation u,, = 4u,,+F(t,x). When the string is subjected to the external forcing F(t,r) =

cos x, the solution is u(t, ) = cos(x — 2t) + %Icos z, while when F(t,2) = sinz, the solution
is u(t, z) = sin(x — 2t) + %sinx. Find a solution when the forcing function F(t, x) is
(a) cosx — 5sinz, (b) sin(z — 3).

(@) u(t, x) =cos(x—2t)+sin(x —2t) +%cosx—%sin X

of ‘ _ 9f
o and 0,[f] =

operators on the space of continuously differentiable functions f(z,y). (b) For which values

af .
_ ?
8:::+b ay+cf+a" linear?

both define linear

1.21.(a) Show that the partial derivatives 9,[f] =

P

of a,b, c,d is the differential operator L[ f] =a

1.22.(a) Prove that the Laplacian A = 6323 + 65 defines a linear differential operator.
(b) Write out the Laplace equation A[u] = 0 and the Poisson equation —A[u] = f.

1.23. Prove that, on R3, the gradient, curl, and divergence all define linear operators.

1.24. Let L and M be linear partial differential operators. Prove that the following are also
linear partial differential operators: (a) L — M, (b) 3L, (¢) fL, where f is an arbitrary
function of the independent variables; (d) Lo M.

1.25. Suppose L and M are linear differential operators and let N = L + M.
(a) Prove that N is a linear operator. (b) True or false: If u solves L{u] = f and v solves
MJv] =g, then w = u+ v solves N[w] = f +g.



Theorem 1.7. Let vy,...,v, be solutions to the inhomogeneous linear systems

Livy] = fy1. ... .Llv,] = fi. involving the same linear operator L. Then, given any
1 1 s L U k 8 8 ‘
constants ¢y, ..., ¢, thelinear combination v = ejvy + - - - + e, v, solves the inhomogencous

system L[v] = f for the combined forcing function f = ey f; + -+ ¢ fr-

1.27. Solve the following inhomogeneous linear ordinary differential equations:
(a) W —du=z—3, (b) 5u"” —4u' +4du=e"cosz, (c) v’ —3u =e7.

u(x) = ce” .
(a) 4 16
2+ 4i 2 Ax 2

(b) 5Xx* —4x+4=0,x =

 FRRLL BERAE R u(x)=ce’ cos -+ c,e’5 sin ?X
o 1
Fralfig Hlu(x)=ae*sinx fLA » Hfga= A
(c) FERf# u(x) =ce™ +c,

KSR U(x) =§xe3*

1.28. Use superposition to solve the following inhomogeneous ordinary differential equations:
(a) ' +2u=1+cosz, (b) v —9u==x+sinz, (c) 9u”’ —18u +10u =1+ e cosz,
(d) v’ +u' —2u =sinha, where sinhz = J(e* —e™ "), (e) v/ +9u =1+ e,

1. Verify that u(X,y)=x*+Yy? is a solution of X@_u+ ya—u—Zu =0
ox oy
2
2. Verify that u(x,y)=e7?Ycosx is a solution of 6_u_6_u_u =0

ox: oy
3. Find the general solution of u, =sinx+y
CPUBTERL AEEY B U0 Y) = ysinx+—y7 ()
A TR B FUlny) =—yoosx+xy"+ [h(xdc+g()

o j h(x)dx 5355 (x)



xy?
u(x,y) =—ycosx+7+ f(X)+g(y)

4. Find the general solution of quxy +Xu, =Y, X> 0

S
TR U+ Uy =7 Y

Sy RS 0 U+ U= 2Ly h(x)
X 2 X

XU, +U :iy2 +xh(x) » xu +u :é(xu)
2X OX

B x f&55r > xu= y*Inx +Ixh(x)dx+ f(y) let _[xh(x)dx =g(x)

2
Inx 1
u(x,y) =242 1 () +9(x)
5. Find the general solution of u,, — X°U = xsiny — R A =T A+ R R A
TR U, = xu = u(x,y) = f(x)e ™ +g(x)e”

(B1fi# y"—ky =0—FE now k=x> A=+x y=ce ™ +ce")

ELURRRIAR) U, = A(X)siny +B(x)cos y (AR 2R

Xsiny

A== B=0 FibLu(xy)=f (™ +9(xe” -
1+x 1+x

6. Find the general solution of u, =2u, +e*”’

Let V(X,y)=u,(X,y) > then v —2v=e"" - i x S5 ¥ fif ODE
BT e 2 e e (v, —2v) =" » e (v, - 2V) :C%/(e2y V)
e v=—"+f(x) » u =v=——e"’+e?f(x)

u(x,y) =—e*v +e? [ f (x)dx+g(y)



7. f#u +yu=2xy

u(x,y)=f(y)e™ +2x—g
y

8.  Verify that u(x,y)=f(x-2y)+g(x+y) is the general solution of 2u, —u, —u, =0



