§ What are Partial Differential Equations ?
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For example, the three-dimensional Navier-Stokes equations
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Is a second-order system of differential equations » while v >0 is a fixed
constant °

v=0 18 known as Euler equations °

The Navier-Stokes equation are fundamental in fluid mechanics ©

Unsolved problem in Clay Mathematics Institute °
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Incidentally, most partial differential equations arising in physical applications are real,
and, although complex solutions often facilitate their analysis, at the end of the day we
require real, physically meaningful solutions. A notable exception is quantum mechanics,
which is an inherently complex-valued physical theory. For example, the one-dimensional

Schréodinger equation
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with h denoting Planck’s constant, which is real, governs the dynamical evolution of the
complex-valued wave function u(¢, ) describing the probabilistic distribution of a quantum
particle of mass m, e.g., an electron, moving in the force field prescribed by the (real)
potential function V' (z). While the solution u is complex-valued, the independent variables
t, x, representing time and space, remain real.
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§ Initial conditions and boundary conditions

There are three principal types of boundary value problems that arise in most
applications °

1. Dirichlet boundary condition

2. Neumann boundary condition

3. Mixed boundary value problem
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§ Linear and nonlinear equations

Homogeneous linear equation
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On the other hand > Burgers’ equation
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Theorem 1.4. Ifu,,...,u, are solutions to a common homogeneous linear equation

L[u] = 0, then the linear combination, or superposition, u = ¢;u; + - - - + ¢y, Is a solution
for any choice of constants c,, ..., c,.

Theorem 1.6. Let v, be a particular solution to the inhomogeneous linear equation
Liv,] = f. Then the general solution to L[v] = f is given by v = v, + u, where u is the
general solution to the corresponding homogeneous equation L[u] = 0.

Theorem 1.7. Let v,,...,v, be solutions to the inhomogeneous linear systems

L{v,] = f,, ... ,L[v.] = f., involving the same linear operator L. Then, given any
constants ¢, . . ., ¢y, the linear combination v = c;v; 4+ - -+ ¢, v, solves the inhomogeneous
system L[v] = f for the combined forcing function f = ¢, f; + -+ ¢, fr-
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