§ Wave 1n space

9.1 Energy and causality

The characteristic cone

Conservation of energy

Principle of causality

Exercises

l.

Find all the three-dimensional plane waves; that is, all the solutions of
the wave equation of the form u(x, t) = f(k - x — ct), where k is a fixed
vector and f is a function of one variable.

: -1 . :
Verify that (c*t?> — x> — y? — z%)” satisfies the wave equation except on
the light cone.

e -1/2 .. . )

Verify that (¢22 — x2 — y2)~"/? satisfies the two-dimensional wave equa-
tion except on the cone {x*> + y> = ¢t}

(Lorentz invariance of the wave equation) Thinking of the coordinates
of space-time as 4-vectors (x, y, z, f), let I" be the diagonal matrix with
the diagonal entries 1, 1, 1, —1. Another matrix L is called a Lorentz

transformation if L has an inverse and L=' = [''LT", where ‘L is the

transpose.

(a) If L and M are Lorentz, show that LM and L~ also are.

(b) Show that L is Lorentz if and only if m(Lv) = m(v) for all 4-
vectors v = (x, y, z, t), where m(v) = X2+ y2 +z2 — 7 is called
the Lorentz metric.

(¢) If u(x, v,z t)is any function and L is Lorentz, let U(x, y, z,1) =
u(L(x, v, z, t)). Show that

Ux.r + U_v_\-' + U.’.Z - U.".f = Uyx + Uyy + Uzz — Uy

(d) Explain the meaning of a Lorentz transformation in more geometrical
terms. (Hint: Consider the level sets of m(v).)

5. Prove the principle of causality in two dimensions.

6. (a) Derive the conservation of energy for the wave equation in a domain

D with homogeneous Dirichlet or Neumann boundary conditions.
(b) What about the Robin condition?

7. For the boundary condition du /dn + b du/dt = 0 with b > 0, show that

the energy defined by (6) decreases.



8. Consider the equation u,, — c>Au + m?u = 0, where m > 0, known as

the Klein—Gordon equation.
(a) What is the energy? Show that it is a constant.

(b) Prove the causality principle for it.

9.2 The wave equation in space-time

Solution in two dimensions

Exercises

1. Prove that A7) = (Au) for any function; that is, the laplacian of the
average 1s the average of the laplacian. (Hint: Write Au in spherical
coordinates and show that the angular terms have zero average on spheres

centered at the origin.)

2. Verify that (3) is correct in the case of the example u(x, y, z,t) = t.

3. Solve the wave equation in three dimensions with the initial data ¢ = 0,
V(x,y,z) =y, by use of (3).

4. Solve the wave equation in three dimensions with the initial data ¢ = 0,
U(x,y,z) = x>+ y? + z2. (Hint: Use (5).)

5. Where does a three-dimensional wave have to vanish if its initial data ¢
and ¢ vanish outside a sphere?

7. (a) Solve the wave equation in three dimensions for r > 0 with the
initial conditions ¢(x) = A for |x| < p, ¢(x) = O for |x| > p, and
Y |x| = 0, where A is a constant. (This is somewhat like the plucked
string.) (Hint: Differentiate the solution in Exercise 6(b).)

(b) Sketch the regions in space-time that illustrate your answer. Where

does the solution have jump discontinuities?
(c) Let |xp| < p. Ride the wave along a light ray emanating from
(X, 0). That 1s, look at u(xq + tv, t) where |v| = c. Prove that

t-u(xg+ tv, t) converges as tr — oQ.

8. Carry out the derivation of the second term in (3).



6.

10.

11.

12.

13.

14.

(a) Let S be the sphere of center x and radius R. What is the surface
area of S N {|x| < p}, the portion of § that lies within the sphere of
center () and radius p?

(b) Solve the wave equation in three dimensions for ¢+ > 0 with the
initial conditions ¢(x) =0, ¥ (x) = A for |x| < p, and Y(x) =0
for |x| > p, where A is a constant. Sketch the regions in space-
time that illustrate your answer. (This is like the hammer blow of
Section 2.1.)

(c) Sketch the graph of the solution (u versus |x|) for t = % I, and 2,
assuming that p = ¢ = A = 1. (This is a “movie” of the solution.)

(d) Sketch the graph of u versus 7 for |x| = % and 2, assuming that p =
¢ = A = 1. (This is what a stationary observer sees.)

(e) Let |xg| < p. Ride the wave along a light ray emanating from
(xp, 0). That 1s, look at u(xp + tv, t) where |v| = ¢. Prove that

t-u(Xg+ tv, t) converges as t — 00.

(Hint: (a) Divide into cases depending on whether one sphere con-
tains the other or not. Use the law of cosines. (b) Use Kirchhoff’s
formula.)

(a) Forany solution of the three-dimensional wave equation with initial
data vanishing outside some sphere, show that u(x, y, z,#) = 0 for
fixed (x, v, z) and large enough ¢.

(b) Provethatu(x, y, z,t) = O(r‘l) uniformly ast — oo; thatis, prove
thatt - u(x, y, z, t) 1s abounded function of x, y, z, and t. (Hint: Use
Kirchhoff’s formula.)

Derive the mean value property of harmonic functions u(x, y, z) by the
following method. A harmonic function is a wave that happens not to
depend on time, so thatits mean value u(r, t) = u(r)satisfies (5). Deduce
that u(r) = u(0).

Find all the spherical solutions of the three-dimensional wave equation;
that is, find the solutions that depend only on r and ¢. (Hint: See (5).)

Solve the three-dimensional wave equation in {r # 0, t > 0} with zero
initial conditions and with the limiting condition

lim 47 ru,(r, t) = g(t).

r—0

Assume that g(0) = ¢'(0) = g"(0) = 0.

Solve the wave equation in the half-space {(x, y,z,1): z > 0} with
the Neumann condition du/dz =0onz =0, and with initial data
¢(x, v, z) = 0 and general Y (x, v, z). (Hint: See (3) and use the method
of reflection.)

Why doesn’t the method of spherical means work for two-dimensional
waves?



15. Obtain the general solution formula (19) in two dimensions from the
special case (18).

16. (a) Solve the wave equation in two dimensions for t > 0 with the
initial conditions ¢(x) = 0, ¥ (x) = A for |x| < p, and ¥ (x) = 0
for [x| > p, where A is a constant. Do not carry out the integral.

(b) Under the same conditions find a simple formula for the solution
u(0, t) at the origin by carrying out the integral.

17. Use the result of Exercise 16 to compute the limitof ¢ - (0, t) as t — oc.

18. For any solution of the two-dimensional wave equation with initial data
vanishing outside some circle, prove that u(x, y, t) = O(t~!) for fixed
(x,y)ast — oo;thatis, t - u(x, y, t) 1s a bounded function of ¢ for fixed
x and y. Note the contrast to three dimensions. (Hint: Use formula (19).)

19. (difficult) Show, however, that if we are interested in uniform conver-
gence, that u(x, y, t) = O(t~'/?) uniformly as t — oo.

20. “Descend” from two dimensions to one as follows. Let u,, = ¢?u,, with

initial data ¢(x) =0 and general Yr(x). Imagine that we don’t know
d’Alembert’s solution formula. Think of u(x, ) as a solution of the two-

dimensional equation that happens not to depend on y. Plug it into (19)
and carry out the integration.

9.3 Rays > singularities > and sources
Characteristic

Relativistic geometry

Singularities

Wave length with a source

Exercises

1. Let S be a characteristic surface for which § N {(x, y, z): t = 0} is the
sphere {x? + y* + z? = a?}. Describe S geometrically.



2. Prove tﬁe converse of The_orem 1. That is, prove that a level surface of

t — y(x) is characteristic if y(x) satisfies the nonlinear PDE

1
IVy®)] =~

C.

()

(Hint: Differentiate the equation (x) to get Xy;;(x)y;(x) = 0, where sub-
scripts denote partial derivatives. Show that a curve, which satisfies the
ODE dx/dt = ¢>Vy(x), also satisfies d’x/dt> = 0 and hence is a ray.
Show that r — y(x) is constant along a ray. Deduce that any level surface
of t — y(x) 1s characteristic.)

Prove Theorem 2 in the one-dimensional case. That is, if € is a spacelike

curve in the xt plane, there is a unique solution of u,, = c?u,, with u = ¢
and du/on = ¥ on €.

Verify that the solution given by (5) has second derivatives which have
jump discontinuities on the surface § = {(x,7): t = y(X)}.

Verify the correctness of (13) for the example u(x, y, z, f) = * and
fx,y,z,0)=2.

Show that the unique solution of (9) is expressible in terms of the source
operator by the simple formula (11).

(difficult) Solve u,, — c*Au = f(x), where f(x) = A for x| < p, f(x) =0
for |x| > p, A1is aconstant, and the initial data are identically zero. Sketch
the regions in space-time that illustrate your answer. (Hint: Use (13) and

find the volume of intersection of two balls, or use (11) and Exercise
9.2.6(b).)

Carry out the passage from (11) to (13) more explicitly using spherical
coordinates.

Simplify formula (13) for the solution of u,, — c’Au = f(x,t) in the
special case that f is spherically symmetric [ f = f(r, 1)].

9.4 The diffusion and Schrodinger equation

Harmonic oscillator

Exercises

1.

Find a simple formula for the solution of the three-dimensional diffusion
equation with ¢(x, y, z) = xy°z. (Hint: See Exercise 2.4.9 or 2.4.10.)



(a) Prove that (6) is valid for products of the form ¢(x)¥(y){(z) and
hence for any finite sum of such products.

(b) Deduce (6) for any bounded continuous function ¢(x). You may use
the fact that there is a sequence of finite sums of products as in part
(a) which converges uniformly to ¢(x).

Find the solution of the diffusion equation in the half-space {(x, Y, Z, 1)
z > 0} with the Neumann condition du/dz = 0 on z = 0. (Hint: Use the
method of reflection.)

Derive the first four Hermite polynomials from scratch.

Show that all the Hermite polynomials are given by the formula

k

2 d
_ k x —x
Hiy(x)=(—1) d—x“e

2

up to a constant factor.

Show directly from the ODE (15) that the functions H;(x)e~*"/? are mu-
tually orthogonal on the interval (—o0, oo). That is

oC
/ Hi(x)H;(x)e ™" dx =0 for'k = 1.

o0

(Hint: See Section 5.3.)

(a) Show thatif A # 2k + 1, any solution of Hermite’s ODE is a power
series but not a polynomial.

(b) Deduce that in this case no solution of Hermite’s ODE can satisfy the
condition at infinity. (Hint: Use the recursion relation (18) to find the
behavior of a; as k — oo. Compare with the power series expansion

of e*’. Deduce that u(x, t) behaves like e as x| = o0.)

9.5 The hydrogen atom

Exercises

Verify the formulas for the first three solutions of the hydrogen atom.

2. For the hydrogen atom if & > 0, why would you expect equation (4) not

to have a solution that satisfies the condition at infinity?



