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Student Solutions to

Chapter 1: What Are Partial Differential Equations?

1.1. (a) Ordinary differential equation, equilibrium, order = 1;

(c) partial differential equation, dynamic, order = 2;

(e) partial differential equation, equilibrium, order = 2;

1.2. (a) (i)
∂2u

∂x2
+
∂2u

∂y2
= 0, (ii) uxx + uyy = 0.

1.4. (a) independent variables: x, y; dependent variables: u, v; order = 1.

1.5. (a)
∂2u

∂x2
+
∂2u

∂y2
= ex cos y − ex cos y = 0; defined and C∞ on all of R2.

1.7. u = log
[
c(x− a)2 + c(y − b)2

]
, for a, b, c arbitrary constants.

1.10. (a)
∂2u

∂t2
− 4

∂2u

∂x2
= 8− 8 = 0.

1.11. (a) c0 + c1t+ c2x+ c3(t
2 + x2) + c4tx, where c0, . . . , c4 are arbitrary constants.

1.15. Example: (b) u2x + u2y + u2 = 0 — the only real solution is u ≡ 0.

1.17. (a) homogeneous linear; (d) nonlinear.

1.19. (a) (i)
∂2u

∂t2
= −4 cos(x− 2 t) = 4

∂2u

∂x2
.

1.21. (a) ∂x[cf + dg ] =
∂

∂x
[cf(x) + dg(x) ] = c

∂f

∂x
+ d

∂g

∂x
= c∂x[f ] + d∂x[g ]. The same proof

works for ∂y. (b) Linearity requires d = 0, while a, b, c can be arbitrary functions of x, y.

1.24. (a) (L−M)[u+ v ] = L[u+ v ]−M [u+ v ] = L[u ] +M [u ]− L[v ]−M [v ]

= (L−M)[u ] + (L−M)[v ],

(L−M)[cu ] = L[cu ]−M [cu ] = cL[u ]− cM [u ] = c(L−M)[u ].

1.27. (b) u(x) = 1
6 e

x sin x+ c1 e
2x/5 cos 4

5 x+ c2 e
2x/5 sin 4

5 x.

1.28. (b) u(x) = − 1
9 x− 1

10 sin x+ c1 e
3x + c2 e

−3x.
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Student Solutions to

Chapter 2: Linear and Nonlinear Waves

2.1.3. (a) u(t, x) = f(t); (e) u(t, x) = e−tx f(t).

2.1.5. u(t, x, y) = f(x, y) where f is an arbitrary C1 function of two variables. This is valid pro-
vided each slice Da,b = D ∩ { (t, a, b) | t ∈ R }, for fixed (a, b) ∈ R

2, is either empty or a
connected interval.

♦ 2.1.9. It suffices to show that, given two points (t1, x), (t2, x) ∈ D, then u(t1, x) = u(t2, x). By
the assumption, (t, x) ∈ D for t1 ≤ t ≤ t2, and so u(t, x) is defined and continuously
differentiable at such points. Thus, by the Fundamental Theorem of Calculus,

u(t2, x)− u(t1, x) =
∫ t2

t1

∂u

∂t
(s, x) ds = 0. Q .E .D.

2.2.2. (a) u(t, x) = e−(x+3 t)2

t = 1 t = 2 t = 3

2.2.3. (b) Characteristic lines: x = 5 t+ c; general solution: u(t, x) = f(x− 5 t);

t

x

♦ 2.2.6. By the chain rule

∂v

∂t
(t, x) =

∂u

∂t
(t− t0, x) ,

∂v

∂x
(t, x) =

∂u

∂x
(t− t0, x) ,

and hence
∂v

∂t
(t, x) + c

∂v

∂x
(t, x) =

∂u

∂t
(t− t0, x) + c

∂u

∂x
(t− t0, x) = 0.

Moreover, v(t0, x) = u(0, x) = f(x). Q.E.D.

2.2.14. (a) u(t, x) =

{
f(x− ct), x ≥ c t,

g(t− x/c), x ≤ c t,
defines a classical C1 solution provided the
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Chapter 2: Student Solutions 3

compatibility conditions g(0) = f(0), g′(0) = −c f(0), hold.
(b) The initial condition affects the solution for x ≥ c t, whereas the boundary condition

affects the solution for x ≤ c t. Apart from the compatibility condition along the charac-
teristic line x = ct, they do not affect each other.

2.2.17. (a) u(t, x) =
1

(xet)2 + 1
=

e−2 t

x2 + e−2 t
.

(b)

t = 0: t = 1:

t = 2: t = 3:

(c) The limit is discontinuous: lim
t→∞

u(t, x) =

{
1, x = 0,

0, otherwise.

2.2.20. (a) The characteristic curves are given by x = tan(t+ k) for k ∈ R.

t

x

(b) The general solution is u(t, x) = g(tan−1 x − t), where g(ξ) is an arbitrary C1 function of
the characteristic variable.

(c) The solution is u(t, x) = f
(
tan(tan−1 x− t)

)
. Observe that the solution is not defined

for x < tan
(
t− 1

2 π
)
for 0 < t < π, nor at any value of x after t ≥ π. As t increases

up to π, the wave moves rapidly off to +∞ at an ever accelerating rate, and the solution
effectively disappears.
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4 Chapter 2: Student Solutions

♥ 2.2.26. (a) Suppose x = x(t) solves
dx

dt
= c(t, x). Then, by the chain rule,

d

dt
u
(
t, x(t)

)
=
∂u

∂t

(
t, x(t)

)
+
∂u

∂x

(
t, x(t)

) dx
dt

=
∂u

∂t

(
t, x(t)

)
+ c

(
t, x(t)

) ∂u
∂x

(
t, x(t)

)
= 0,

since we are assuming that u(t, x) is a solution to the transport equation for all (t, x).
We conclude that u

(
t, x(t)

)
is constant.

2.2.27. (a) The characteristic curves are the cubics x = 1
3 t

3 + k, where k is an arbitrary constant.

(b) The solution u(t, x) = e− (x−t3/3)2 is a Gaussian hump of a fixed shape that comes in from
the left for t < 0, slowing down in speed as t → 0−, stops momentarily at the origin at
t = 0, but then continues to move to the right, accelerating as t→ ∞.

2.3.1. (a) u(t, x) =





2, x < 3
2 t− 1,

1, x > 3
2 t− 1,

is a shock wave moving to the right with speed 3
2 and jump magnitude 1.

2.3.3. Yes, a shock wave is produced. According to (2.41), when f(x) = (x2 + 1)−1, the shock
starts at time

t⋆ = min





(x2 + 1)2

2x
= 1

2 x
3 + x+ 1

2 x
−1

∣∣∣∣∣∣
x > 0



 =

8

3
√
3
≈ 1.5396.

The minimum value occurs at x⋆ = 1/
√
3, which is found by setting the derivative

d

dx

(
1
2 x

3 + x+ 1
2 x

−1
)
= 3

2 x
2 + 1− 1

2 x
−2 = 0.

The solution is graphed at the indicated times:

t = 1.2

t = 1.7

t = 2.3

2.3.6. (a) If and only if α = γ.

2.3.9. (b) u(t, x) =




x/(t+ 1), −

√
t+ 1 < x <

√
t+ 1 ,

0, otherwise,
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Chapter 2: Student Solutions 5

t = .5 t = 1 t = 2

The mass is conserved because the area under the graph of the solution at each time is
constant, namely 0.

♦ 2.3.14. (a) According to the Implicit Function Theorem, the equation

F (t, x, u) = u− f(x− tu) = 0

can be locally uniquely solved for u(t, x) provided

0 6= ∂F

∂u
= 1 + t f ′(x− tu), and so f ′(x− tu) 6= −1

t
.

2.3.15. It is a solution if and only if either

(i) k = 1/2 and α = γ, or (ii) k = 0, or (iii) α = γ = 0, or (iv) α = β = 0.

2.3.17. (a) The mass conservation law is

∂u

∂t
+

∂

∂x

(
1
3 u

3
)
= 0,

and so, following the previous argument, the shock speed is given by

dσ

dt
=

1
3 [u

−(t)3 − u+(t)3 ]

u−(t)− u+(t)
=
u−(t)2 + u−(t)u+(t) + u+(t)2

3
.

(b) (i) If | a | > | b |, then we have a shock wave solution:

u(t, x) =

{
a, x < ct,

b, x > ct,
where c =

a2 + ab+ b2

3
.

Note that, in this case, c > 0 and so shocks always move to the right.

(ii) On the other hand, if | a | < | b |, then we have a rarefaction wave:

u(t, x) =





a, x ≤ a2t,
√
x/t , a2t ≤ x ≤ b2t,

b, x ≥ b2t.

2.4.2. (a) The initial displacement splits into two half sized replicas, moving off to the right and
to the left with unit speed.

For t < 1
2 , we have u(t, x) =





1, 1 + t < x < 2− t,
1
2 , 1− t < x < 1 + t or 2− t < x < 2 + t,

0, otherwise,

For t ≥ 1
2 , we have u(t, x) =





1
2 , 1− t < x < 2− t or 1 + t < x < 2 + t,

0, otherwise,
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6 Chapter 2: Student Solutions

(b) Plotted at times t = 0, .25, .5, .75, 1., 1.25:

-1 1 2 3 4 5 6
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0.5

1

-1 1 2 3 4 5 6

-1

-0.5

0.5

1

-1 1 2 3 4 5 6

-1

-0.5

0.5

1

-1 1 2 3 4 5 6

-1

-0.5

0.5

1

-1 1 2 3 4 5 6

-1

-0.5

0.5

1

-1 1 2 3 4 5 6

-1

-0.5

0.5

1

2.4.4. (b)
1

2

∫ x+t

x−t
2 cos(2z) dz =

sin 2(x+ t)− sin 2(x− t)

2
.

2.4.8. (a) { (t, x) | 2− 2 t ≤ x ≤ 2 + 2 t, t ≥ 0 }.
♥ 2.4.11. (a) u(t, x) = 1

4 sin(x− 2 t) + 3
4 sin(x+ 2 t); (b) True.

♦ 2.4.13. First of all, the decay assumption implies that E(t) < ∞ for all t. To show E(t) is con-
stant, we prove that its derivative is 0. Using the smoothness of the solution to justify
bringing the derivative under the integral sign, we compute

dE

dt
=

d

dt

∫ ∞

−∞
( 12 u

2
t + 1

2 c
2u2x) dx =

∫ ∞

−∞
(ututt + c2uxuxt) dx

= c2
∫ ℓ

0
(utuxx + uxuxt) dx = c2

∫ ∞

−∞
d

dx
(utux) dx = 0,

since ut, ux → 0 as x→ ∞. Q.E.D.

2.4.17. (a) Because
(
∂t + c(x) ∂x

)(
∂t − c(x) ∂x

)
= ∂2t − c(x)2 ∂2x − c(x) c′(x)∂x 6= ∂2t − c(x)2 ∂2x.

♦ 2.4.20. (a) Setting x = r cos θ, y = r sin θ, we have dx dy = r dr dθ, and hence
∫∫

R2
e−a(x2+y2) dx dy =

∫ π

−π

∫ ∞

0
r e−ar2 dr dθ

= 2π
∫ ∞

0
r e−ar2 dr = − π

a
e−ar2

∣∣∣∣
∞

r=0
=
π

a
.

(b) By part (a),

π

a
=
∫∫

R2
e−a(x2+y2) dx dy =

∫ ∞

−∞

∫ ∞

−∞
e−ax2

e−ay2

dy dx

=
( ∫ ∞

−∞
e−ax2

dx
)(∫ ∞

−∞
e−ay2

dy
)
=
( ∫ ∞

−∞
e−ax2

dx
)2
.

Taking square roots of both sides establishes the identity. Q.E.D.
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Student Solutions to

Chapter 3: Fourier Series

3.1.1. (b) (i)
(
∂

∂x
+ 1

) [
u(x) + v(x)

]
=
∂u

∂x
+
∂v

∂x
+ u(x) + v(x)

=

(
∂

∂x
+ 1

)
u(x) +

(
∂

∂x
+ 1

)
v(x) ,

(
∂

∂x
+ 1

) [
c u(x)

]
= c

∂u

∂x
+ cu(x) = c

(
∂

∂x
+ 1

)
u(x) ;

(ii)

(
∂

∂x
+ 1

) [
c(t)u(x)

]
= c(t)

∂u

∂x
+ c(t)u(x) = c(t)

(
∂

∂x
+ 1

)
u(x) ;

(iii)
∂u

∂t
=
∂u

∂x
+ u.

3.1.2. (a) exp(−n2 t) sinnx for n = 1, 2, . . ..

3.1.4. (a) u(t, x) = eλ(t+x).

3.2.1. (a)
4

π

∞∑

j=0

sin(2j + 1)x

2j + 1
; (b)

π

2
− 4

π

∞∑

j=0

cos(2j + 1)x

(2j + 1)2
.

3.2.2. (b)
1

2
− 2

π

∞∑

j=0

(−1)j cos(2j + 1)x

2j + 1
.

3.2.5. (a) True.

3.2.6. (b)

-5 5 10 15

20

40

60

80

100

differentiable,

(d)

-5 5 10 15
-0.2

0.2

0.4

0.6

0.8

1

continuous.
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8 Chapter 3: Student Solutions

3.2.7. (b)

-5 5 10

-1.5
-1

-0.5

0.5
1

1.5

3.2.12. (a) f(x) = (x− n)2, when n ≤ x < n+ 1;

-2 -1 1 2 3

0.2

0.4

0.6

0.8

1

3.2.14. (a) Discontinuities: x = −1, magnitude 1; x = 0, magnitude 2; x = 1, magnitude = 3;

(d) no discontinuities.

3.2.15. (a) Discontinuities: x = −2, magnitude e−2;
x = −1, magnitude −e−1;
x = 1, magnitude e; x = 2, magnitude −e2;

-3 -2 -1 1 2 3

1

2

3

4

5

6

7

3.2.16.
3.2.14 (a) Yes: no corners; (d) yes: corners at x = 0, 2.

3.2.15 (a) Yes: no corners.

3.2.19. (a) Piecewise continuous, but not piecewise C1 or piecewise C2.

3.2.21. (a) If f and g are continuous at x, so is f + g. More generally, since the limit of a sum is
the sum of the limits, (f + g)(x−) = f(x−) + g(x−), (f + g)(x+) = f(x+) + g(x+), and
so f + g is piecewise continuous at every x.

(b) Every jump discontinuity of f or of g is a jump discontinuity of f + g, except when f
and g have opposite jump magnitudes at the same point, so
f(x+)− f(x−) = g(x−)− g(x+), in which case x is a removable discontinuity of
f + g. The jump magnitude of f + g at x is the sum of the jump magnitudes of f and g,
namely, f(x+)− f(x−) + g(x+)− g(x−).

(c) The sum 2σ(x) + σ(x+ 1)− 3σ(x− 1) + sign(x2 − 2x) = σ(x+ 1)− σ(x− 1) has jump
discontinuities at x = −1 of magnitude 1 and at x = 1 of magnitude −1. The jumps at
x = 0 have canceled out, leaving a removable discontinuity.
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Chapter 3: Student Solutions 9

3.2.25. (a)
-3 -2 -1 1 2 3

-1

-0.5

0.5

1

(b) f(x) ∼ 1

π
+

1

2
sinx− 2

π

∞∑

j=1

cos 2j x

4j2 − 1
.

(c)
-3 -2 -1 1 2 3

-1

-0.5

0.5

1

-3 -2 -1 1 2 3

-1

-0.5

0.5

1

-3 -2 -1 1 2 3

-1

-0.5

0.5

1

-3 -2 -1 1 2 3

-1

-0.5

0.5

1

-3 -2 -1 1 2 3

-1

-0.5

0.5

1

The maximal errors on [−π, π ] are, respectively .3183, .1061, .06366, .04547, .03537, .02894.
(d) The Fourier series converges (uniformly) to sinx when 2kπ ≤ x ≤ (2k + 1)π and to 0

when (2k − 1)π ≤ x ≤ 2kπ for k = 0,±1,±2, . . . .

3.2.31. (a) Even, (c) odd.

♦ 3.2.33. (a) If both f, g are even, then f(−x) g(−x) = f(x) g(x);
if both f, g are odd, then f(−x) g(−x) = (− f(x)) (− g(x)) = f(x) g(x);
if f is even and g is odd, then f(−x) g(−x) = f(x)) (− g(x)) = − f(x) g(x). Q.E.D.

3.2.37. (a) True.

3.2.39. Even extension: 1− π

2
+

4

π

∞∑

j=0

cos(2j + 1)x

(2j + 1)2
;

converges uniformly to 2π–periodic extension of the function f(x) = 1− |x |.

-5 5 10

-2

-1

1

2

3.2.41. (a) Sine series:
4

π

∞∑

j=0

sin(2j + 1)x

2j + 1
;

-5 5 10

-1

-0.5

0.5

1
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10 Chapter 3: Student Solutions

cosine series: 1;
-5 5 10

-1

-0.5

0.5

1

3.2.42. coshmx ∼ sinhmπ

mπ
+

2m sinhmπ

π

∞∑

k=1

(−1)k cos kx

k2 +m2
.

3.2.51. (a) 1
2 i e− ix − 1

2 i e ix, (c) i
∞∑

k=−∞
k 6=0

(−1)k e i kx

k
.

3.2.54. We substitute x = π into the Fourier series (3.68) for ex:

1
2 (e

π + e−π) =
sinh π

2π

∞∑

k=−∞

(−1)k(1 + i k)

1 + k2
e i kπ =

eπ − e−π

2π


 1 +

∞∑

k=1

2

1 + k2


 ,

which gives the result.

♦ 3.2.58. Replace x in the Fourier series for f(x) by x− a. Thus, the complex Fourier coefficients of
f(x− a) are ĉk = e− i a ck, where ck are the complex Fourier coefficients of f(x).

3.3.1. (a) ρ(x) ∼ π

4
− 2

π

∞∑

j=0

cos(2j + 1)x

(2j + 1)2
+

∞∑

k=1

(−1)k−1 sin kx

k
.

3.3.4. (a) Integrating (3.74), we have

1

6
x3 − π2

6
x ∼ − 2

∞∑

k=1

(−1)k−1

k3
sin kx,

and hence, in view of (3.73),

x3 ∼ 12
∞∑

k=1

(−1)k

 1

k3
− π2

6k


 sin kx.

♦ 3.3.9. If f is piecewise continuous and has mean zero, so c0 = 0, then the complex Fourier series
for its integral is

g(x) =
∫ x

0
f(y) dy ∼ m −

∞∑

0 6=k=−∞
i
ck
k
e ikx, where m =

1

2π

∫ π

−π
g(x) dx.

3.4.1. (a)
2

π

∞∑

k=1

(−1)k−1 sin kπx

k
− 8

π3

∞∑

j=0

sin(2j + 1)πx

(2j + 1)3
; (b)

1

3
+

4

π2

∞∑

k=1

(−1)k cos kπx

k2
.
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Chapter 3: Student Solutions 11

3.4.2. (a) Sine series:
4

π

∞∑

j=0

sin(2j + 1)πx

2j + 1
;

-3 -2 -1 1 2 3 4

-2

-1

1

2

cosine series: 1; -3 -2 -1 1 2 3 4

-2

-1

1

2

3.4.3. (b) − 8

3
+

16

π2

∞∑

k=1

(−1)k

k2
cos

kπx

2
;

-6 -4 -2 2 4 6 8 10

-4

-3

-2

-1

3.4.4. The differentiated Fourier series only converges when the periodic extension of the function

is continuous: (b)
8

π

∞∑

k=1

(−1)k−1

k
sin

kπx

2
: converges to the 4–periodic extension of 2x.

3.4.5. (b)
x3

3
− 4x ∼ − 8

3
x +

32

π3

∞∑

k=1

(−1)k

k3
sin

kπx

2
∼ 32

3π

∞∑

k=1


 π2 k2 + 3

π2 k3


 sin

kπx

2
.

3.5.2. (a) converges to
(
0, 12

)
; (c) converges to ( 0, 0 ); (e) converges to ( 0, 0 ).

3.5.3. (a) Converges pointwise to the constant function 1;

(c) converges pointwise to the function f(x) =

{
1, x = 0,

0, x 6= 0.

3.5.5. (a) Pointwise, but not uniformly; (c) both.

3.5.6. It converges pointwise since, for each x 6= 0, as n → ∞, the exponential term goes to
zero faster than the linear term in n; on the other hand, fn(0) = 0 for all n. It does not

converge uniformly since max vn =
√
n/(2e) 6−→ 0.

3.5.7. (b) pointwise.

3.5.11. (a) Uniformly convergent; (c) doesn’t pass test.

♦ 3.5.15. According to (3.66), | ck | = 1
2

√
a2k + b2k , and hence the condition (3.97) holds. Thus, the

result follows immediately from Theorem 3.29.

3.5.21. (a) The periodic extension is not continuous, and so the best one could hope for is

ak, bk → 0 like 1/k. Indeed, a0 = −2π, ak = 0, bk = (−1)k+12/k, for k > 0.

c© 2017 Peter J. Olver



12 Chapter 3: Student Solutions

3.5.22. (b) C3; (d) not even continuous.

♣ 3.5.23. (a) This sums to a smooth, C∞ function.

-3 -2 -1 1 2 3

0.25

0.5

0.75

1

1.25

1.5

1.75

2

The error in the nth partial sum is bounded by
∞∑

k=n+1

e−k =
e−n

e− 1
which is ≈ .0039

when n = 5, and so summing from k = 0 to 5 will produce accuracy in the second
decimal place on the entire interval.

3.5.26. (a) Converges in norm.

3.5.27. (b) Converges pointwise to x; does not converge in L2 norm.

3.5.31. In 3.5.22: (b)

√√√√√√

∞∑

k=−∞
k 6=0

1

k4(1 + k3)2
; (d)

√√√√
∞∑

k=0

1

(k + 1)2
.

♦ 3.5.34. (a) ‖ f + g ‖2 = 〈 f + g ; f + g 〉 = ‖ f ‖2 + 〈 f ; g 〉+ 〈 g ; f 〉+ ‖ g ‖2

= ‖ f ‖2 + 〈 f ; g 〉+ 〈 f ; g 〉+ ‖ g ‖2 = ‖ f ‖2 + 2Re 〈 f ; g 〉+ ‖ g ‖2.

3.5.37. (a) The complex Fourier coefficients of f(x) = x are ck =





(−1)k i /k, k 6= 0,

0, k = 0.
Thus, Plancherel’s formula is

π3

3
=

1

2π

∫ π

−π
x2 dx =

∞∑

k=−∞
| ck |2 =

∞∑

k=−∞
k 6=0

1

k2
= 2

∞∑

k=1

1

k2
,

which coincides with (3.57).

♦ 3.5.41. Note first that, for 1 ≤ k ≤ n,

0 ≤ | v(n)i − v⋆i | ≤
√(

v
(n)
1 − v⋆1

)2
+ · · · +

(
v(n)m − v⋆m

)2
= ‖v(n) − v

⋆ ‖,

and hence if ‖v(n) − v
⋆ ‖ → 0, then | v(n)i − v⋆i | → 0 and so v

(n)
i → v⋆i .

On the other hand, if v
(n)
i → v⋆i for all i = 1, . . . ,m, then

‖v(n) − v
⋆ ‖ =

√(
v
(n)
1 − v⋆1

)2
+ · · · +

(
v(m)
n − v⋆m

)2 −→ 0. Q .E .D.
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Student Solutions to

Chapter 4: Separation of Variables

4.1.1. (a) u(t, x) → u⋆(x) = 10x; (b) for most initial conditions, at the exponential rate e−π2t;
others have faster decay rate; (c) for the same initial conditions as in part (b), when

t≫ 0, the temperature u(t, x) ≈ 10x+ c e−π2t sinπx for some c 6= 0 .

4.1.4. The solution is

u(t, x) =
∞∑

n=1

dn exp
[
−
(
n+ 1

2

)2
π2 t

]
sin
(
n+ 1

2

)
πx

where

dn = 2
∫ 1

0
f(x) sin

(
n+ 1

2

)
πxdx

are the “mixed” Fourier coefficients of the initial temperature u(0, x) = f(x). All solu-
tions decay exponentially fast to zero: u(t, x) → 0 as t → ∞. For most initial condi-

tions, i.e., those for which d1 6= 0, the decay rate is e−π2t/4 ≈ e−2.4674 t. The solution
profile eventually looks like a rapidly decaying version of the first eigenmode sin 1

2 πx.

4.1.10. (a) u(t, x) = e−t cosx; equilibrium temperature: u(t, x) → 0.

♦ 4.1.13. Since u(t, x) → 0 uniformly in x, the thermal energy E(t) =
∫ ℓ

0
u(t, x) dx → 0 also.

So if E(t0) 6= 0, then E(t) cannot be constant. On physical grounds, the energy is not
constant due to the nonzero heat flux through the ends of the bar, as measured by the
boundary terms in

dE

dt
=

d

dt

∫ ℓ

0
u(t, x) dx =

∫ ℓ

0

∂u

∂t
(t, x) dx =

∫ ℓ

0

∂2u

∂x2
(t, x) dx =

∂u

∂x
(t, ℓ)− ∂u

∂x
(t, 0).

Thus, in general, E′(t) 6= 0, which implies that E(t) is not constant.

♦ 4.1.17. By the chain rule, vt = ut + cux = γ uxx = γ vxx. The change of variables represents a
Galilean boost to a coordinate system that is moving with the fluid at speed c.

4.2.3. (b) u(t, x) =
4

π

∞∑

j=0

sin
√
2 (2j + 1) t sin (2j + 1)x√

2 (2j + 1)2
; (f ) u(t, x) = t− 1.

4.2.4. (b) 1, t, cosnt cosnx, sinnt cosnx, for n = 0, 1, 2, . . . .

♥ 4.2.9. (a) The solution formulae depend on the size of a. For k = 1, 2, 3, . . . , the separable
solutions are

e−α+

k
t sin kπx,

e−α−

k
t sin kπx,

where α±
k =

a±
√
a2 − 4k2π2c2

2
, for k <

a

2πc
,

and, possibly,

e−at/2 sin kπx, t e−at/2 sin kπx, provided 0 < k =
a

2πc
is an integer,

c© 2017 Peter J. Olver



14 Chapter 4: Student Solutions

and

e−at/2 cosωk t sin kπx,

e−at/2 sinωk t sin kπx,
where ωk = 1

2

√
4k2π2c2 − a2 , for k >

a

2πc
.

In particular, if a < 2πc, then only the latter modes appear.

(b) For the given initial data, the series solution is

∑

k<a/(2π c)

bk
α+
k e

−α−

k
t − α−

k e
−α+

k
t

α+
k − α−

k

sin kπx+
∑

k=a/(2π c)

bke
−at/2

(
1 + 1

2 at
)
sin kπx

+
∑

k>a/(2π c)

bke
−at/2

(
cosωk t+

a

2ωk
sinωk t

)
sin kπx,

where k = 1, 2, 3, . . . must be a positive integer, with the convention that the sum is
zero if no positive integer satisfies the indicated inequality or equality, while

bk = 2
∫ 1

0
f(x) sin kπx dx are the usual Fourier sine coefficients of f(x) on [0, 1].

(c) For underdamped or critically damped motion, where 0 < a ≤ 2πc, the modes all

decay exponentially, as a rate e−at/2. In the overdamped case, a > 2πc, the slowest

decaying mode has decay rate e−α−

1
t where α−

1 =
a−

√
a2 − 4π2c2

2
.

(d) If a < 2πc, the system is underdamped, while if a > 2πc it is overdamped.

4.2.14. (a) The initial displacement splits into two half sized replicas, moving off to the right and
to the left with unit speed.

Plotted at times t = 0, .25, .5, .75, 1., 1.25:

-1 1 2 3 4 5 6

-1

-0.5

0.5

1

-1 1 2 3 4 5 6

-1

-0.5

0.5

1

-1 1 2 3 4 5 6

-1

-0.5

0.5

1

-1 1 2 3 4 5 6

-1

-0.5

0.5

1

-1 1 2 3 4 5 6

-1

-0.5

0.5

1

-1 1 2 3 4 5 6

-1

-0.5

0.5

1

4.2.15. (a) The solution initially forms a trapezoidal displacement, with linearly growing height
and sides of slope ±1 expanding in both directions at unit speed, starting from x = 1
and 2. When the height reaches .5, it momentarily forms a triangle. Afterwards, it
takes the form of an expanding trapezoidal form of fixed height .5, with the diagonal
sides propagating to the right and to the left with unit speed.

Plotted at times t = 0, .25, .5, .75, 1., 1.5:

-1 1 2 3 4 5 6

-0.6

-0.4

-0.2

0.2

0.4

0.6

-1 1 2 3 4 5 6

-0.6

-0.4

-0.2

0.2

0.4

0.6

-1 1 2 3 4 5 6

-0.6

-0.4

-0.2

0.2

0.4

0.6
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-1 1 2 3 4 5 6

-0.6

-0.4

-0.2

0.2

0.4

0.6

-1 1 2 3 4 5 6

-0.6

-0.4

-0.2

0.2

0.4

0.6

-1 1 2 3 4 5 6

-0.6

-0.4

-0.2

0.2

0.4

0.6

♦ 4.2.22. The solution is periodic if and only if the initial velocity has mean zero:
∫ ℓ

0
g(x) dx = 0.

For generic solutions, the period is 2ℓ/c, although some special solutions oscillate more
rapidly.

4.2.24. (a) The initial position f(x) and velocity g(x) should be extended to be even functions
with period 2. Then the d’Alembert formula

u(t, x) =
f(x− t) + f(x+ t)

2
+

1

2

∫ x+t

x−t
g(z) dz

will give the solution on 0 ≤ x ≤ 1.

(b) Graphing the solution at t = 0, .05, .1, .15, . . . , .5:

0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

At t = .5, . . . , 1, the solution has the same graphs, run in reverse order, since u(1−t, x) =
u(t, x). At t = 1 the solution repeats: u(t+1, x) = u(t, x), since it is periodic of period 1.

(c) Graphing the solution at t = .25, .5, .75, . . . , 2:

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

After this, the solution repeats, but with an overall increase in height of 1 after each
time period of 2. Indeed, u(t + 1, x) = 1

2 + u(t,−x), while u(t + 2, x) = u(t, x) + 1.
The solution is not periodic.
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16 Chapter 4: Student Solutions

♦ 4.2.28. The d’Alembert formula (4.77) implies that the solution is

u(t, x) =
f(x− c t) + f(x+ c t)

2
+

1

2 c

∫ x+c t

x−c t
g(z) dz,

where f(x) and g(x) denote the ℓ–periodic extensions of the initial data functions.
Thus, by periodicity of the initial data and Lemma 3.19,

u

(
t+

ℓ

c
, x

)
− u(t, x) =

f(x− c t− ℓ)− f(x− c t) + f(x+ c t+ ℓ)− f(x+ c t)

2

+
1

2 c

(∫ x+c t+ℓ

x−c t−ℓ
g(z) dz −

∫ x+c t

x−c t
g(z) dz

)

=
1

2 c

(∫ x+c t+ℓ

x+c t
g(z) dz +

∫ x−c t

x−c t−ℓ
g(z) dz

)
=

1

c

∫ ℓ

0
g(z) dz.

If
∫ ℓ

0
g(x) dx = 0, then u(t, x) is a periodic function of t with period

ℓ
c . On the other

hand, if
∫ ℓ

0
g(x) dx 6= 0, then u(t, x) increases (or decreases) by a fixed nonzero amount

after each time interval of duration ℓ/c, and so cannot be a periodic function of t.

♦ 4.2.31. (a) Oddness require f(0) = − f(−0) = − f(0), so f(0) = 0. Also, f(−ℓ) = − f(ℓ), while
f(−ℓ) = f(2ℓ− ℓ) = f(ℓ) by periodicity; thus f(ℓ) = 0.

4.2.34. (a) If u(t, x) is even in t, then ut(t, x) is odd, and so ut(0, x) = 0. Vice versa, if
ut(0, x) = g(x) = 0, then, by the d’Alembert formula (4.77),

u(− t, x) = f(x+ c t) + f(x− c t)

2
= u(t, x).

4.3.2. If the force has magnitude f < 0,

−∆u = f, x2 + y2 < 1, u = 0, x2 + y2 = 1, y > 0,
∂u

∂n
= 0, x2 + y2 = 1, y < 0.

4.3.6. ∆u = 0, u(0, y) = u(x, 0) = 1, u(1, y) = 1 + y, u(x, 1) = 1 + x, 0 < x, y < 1.

4.3.10. (b) u(x, y) =
sinh(π − x) sin y

sinh π
.

4.3.12. (a) u(x, y) =
sin πx sinh π(1− y) + sinhπ(1− x) sin πy

sinh p

4.3.13. (b) u(x, y) =
2

π
− 4

π

∞∑

n=1

cosnx coshn(π − y)

(4n2 − 1) coshn π
.

4.3.17. u(x, y) =
∞∑

n=1

bne
1−y sinnπx sinh

√
n2π2 + 1 y

sinh
√
n2π2 + 1

, where bn = 2
∫ 1

0
f(x) sinnπxdx

are the Fourier sine coefficients of the boundary data.

4.3.22. (a) u(x) = c1x+
c2
x5

, (c) u(x) = c1 |x |
(1+

√
5)/2 + c2 |x |

(1−
√
5)/2.
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Chapter 4: Student Solutions 17

4.3.25. (a) u(x, y) = 1
4 r

3 cos 3θ + 3
4 r cos θ =

1
4 x

3 − 3
4 xy

2 + 3
4 x.

♥ 4.3.27. (b) u(x, y) = 1− 2
π

tan−1


 1− x2 − y2

2y


 , x2 + y2 < 1, y > 0.

4.3.31. Since the boundary conditions are radially symmetric, u must also be radially symmetric,
and hence a linear combination of log r and 1. A short computation shows that

u =
b− a

log 2
log r + b =

b− a

2 log 2
log(x2 + y2) + b.

4.3.34. (b) u(r, θ) =
2

3

(
r − 1

r

)
cos θ, (f ) no solution.

♦ 4.3.40. First, ∫ 1− r2

1 + r2 − 2r cos(θ − φ)
dφ = tan−1

(
1 + r

1− r
tan

φ− θ

2

)
.

To evaluate the definite integral, from φ = 0 to π, we need to be careful about the
branches of the inverse tangent:

u(r, θ) =
1

2π

∫ π

0

1− r2

1 + r2 − 2r cos(θ − φ)
dφ =





1− 1

π
tan−1


 1− r2

2r sin θ


 , 0 < θ < π,

1
2 , θ = 0,±π,

− 1

π
tan−1


 1− r2

2r sin θ


 , −π < θ < 0.

where we use the usual branch − 1
2 π < tan−1 t < 1

2 π of the inverse tangent.

4.3.44. For example, u(x, y) = 1 − x2 − y2 satisfies −∆u = 4, and achieves its maximum at
x = y = 0. It represents the displacement of a circular membrane due to a uniform
upwards force of magnitude 4.

4.4.1. (b) hyperbola:
-15 -10 -5 5 10 15

-15

-10

-5

5

10

15

4.4.2. (a) Elliptic; (f ) hyperbolic.

4.4.3. Elliptic when x(t+ x) > 0; parabolic when t = −x or x = 0, but not both;
hyperbolic when x(t+ x) < 0; degenerate at the origin t = x = 0.

4.4.6. Written out, it becomes

L[u ] = −p(x, y)uxx − q(x, y)uyy − px(x, y)ux − qy(x, y)uy + r(x, y)u = f(x, y),

with discriminant ∆ = −4p(x, y)q(x, y); hence elliptic if and only if p(x, y)q(x, y) > 0.

4.4.13. According to (4.139) (with y replacing t), the discriminant is

∆ = (2 uxuy)
2 − 4 (1 + u2x) (1 + u2y) = −4 (1 + u2x + u2y) < 0,

and hence the equation is elliptic everywhere.
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18 Chapter 4: Student Solutions

4.4.14. (a) No real characteristics;

(f ) vertical lines t = a or lines x = t+b of slope 1:

4.4.18. (a) Parabolic when y = 0; hyperbolic everywhere else.

(b) The characteristics satisfy the ordinary differential equation

(
dy

dx

)2

− y
dy

dx
= 0.

Thus, either
dy

dx
= 0 and so y = k, or

dy

dx
= y and so y = ±c ex.

(c) The characteristic coordinates are ξ = ye−x, η = y. By the chain rule, the equation
for u = v(ξ, η) = v(ye−x, y) becomes −ξ η vξη = η2, with general solution

v = F (ξ) +G(η) + 1
2 η

2 log ξ, whence u = F (y) +G(ye−x) + 1
2 y

2(x− log y),

where F,G are arbitrary scalar functions.

4.4.19. (b) uxx + 2yuxy + y2uyy = 0; one can also include arbitrary lower-order terms.
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Student Solutions to

Chapter 5: Finite Differences

♣ 5.1.1. (b) u′(1) = −.5; finite difference approximations: −.475113,−.497500,−.499750;
errors: .024887, .002500, .000250; first-order approximation.

♣ 5.1.2. (b) u′(1) = −.5; finite difference approximations: −.4999875,−.49999999875,
−.49999999999986; errors: 1.25× 10−5, 1.25× 10−9, 1.38× 10−13;
looks like a fourth-order approximation.

♣ 5.1.3. (b) u′′(1) = .5; finite difference approximations: .49748756, .49997500, .49999975;
errors: −2.51× 10−3,−2.50× 10−5,−2.50× 10−7; second-order approximation.

♠ 5.1.5. (a) u′(x) =
−3u(x) + 4u(x+ h)− u(x+ 2h)

2h
+ O(h2).

(c) The errors in computing u′(1) = 5.43656 are, respectively, −2.45× 10−1, −1.86× 10−3,
−1.82 × 10−5, which is compatible with a second-order appproximation because each

decrease in step size by 1
10 = 10−1 decreases the error by approximately

(
1
10

)2
= 10−2.

5.2.1. (a) 0 < ∆t ≤ .001.

(b) For ∆t = .001:, we plot the numerical solution at times t = 0., .01, .03, .05, .1, .3, .5, 1.:
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20 Chapter 5: Student Solutions

For ∆t = .0011:, we plot the numerical solution at times t = .011, .0308, .0506, .0704:
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The former is a good approximation, whereas the latter is clearly unstable.

5.2.4. Before approximation, the initial data is

-1 -0.75 -0.5 -0.25 0.25 0.5 0.75 1

0.1

0.2

0.3

0.4

0.5

In each case, we graph the numerical solution using piecewise affine interpolation between
data points.

(a) For ∆x = .1:
(i) With ∆t = .005, so that µ = .5:
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(ii) With ∆t = .01:

-1 -0.75-0.5-0.25 0.25 0.5 0.75 1

0.1

0.2

0.3

0.4

0.5

-1 -0.75-0.5-0.25 0.25 0.5 0.75 1

0.1

0.2

0.3

0.4

0.5

-1 -0.75-0.5-0.25 0.25 0.5 0.75 1

0.1

0.2

0.3

0.4

0.5

-1 -0.75-0.5-0.25 0.25 0.5 0.75 1

0.1

0.2

0.3

0.4

0.5

c© 2017 Peter J. Olver



Chapter 5: Student Solutions 21

-1 -0.75-0.5-0.25 0.25 0.5 0.75 1

0.1

0.2

0.3

0.4

0.5

-1 -0.75-0.5-0.25 0.25 0.5 0.75 1

0.1

0.2

0.3

0.4

0.5

-1 -0.75-0.5-0.25 0.25 0.5 0.75 1

0.1

0.2

0.3

0.4

0.5

-1 -0.75-0.5-0.25 0.25 0.5 0.75 1

0.1

0.2

0.3

0.4

0.5

(iii) With ∆t = .01:
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(b) For ∆x = .01:
(i) We would need ∆t < .00001, which requires too much computation!
(ii) With ∆t = .01:
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(iii) With ∆t = .01:
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Note the undesirable oscillations in the Crank-Nicolson scheme due to the singularity in the
initial data at x = 0.

5.2.8. (a) Set ∆x = 1/n. The approximations uj,m ≈ u(tj , xm) = u(j∆t,m∆x) are iteratively
computed using the explicit scheme

uj+1,m = µuj,m+1 + (1− 2µ− α∆t)uj,m + µuj,m−1,
j = 0, 1, 2, . . . ,

m = 1, . . . , n− 1,

where µ = ∆t/(∆x)2, along with boundary conditions uj,0 = uj,n = 0 and initial
conditions u0,m = fm = f(xm).

(b) Applying the von Neumann stability analysis, the magnification factor is

λ = 1− 4µ sin2
(
1
2 k∆x

)
− α∆t.

Stability requires 0 ≤ 4µ+ α∆t ≤ 2, and hence, since we are assuming α > 0,

∆t ≤ (∆x)2

2 + 1
2 α(∆x)

2
≈ 1

2 (∆x)2,

for sufficiently small ∆x≪ 1.

5.3.1. We set ∆t = .03 to satisfy the CFL condition (5.41):
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The solution is reasonably accurate, showing the wave moving to the left with speed c = −3.
Comparing the numerical solution with the explicit solution u(t, x) = f(x + 3 t) at the
same times, we see that the numerical solution loses amplitude as it evolves:
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At the three times, the maximum discrepancies (L∞ norm of the difference between the
exact and numerical solutions) are, respectively, .0340, 0.0625, 0.0872.

5.3.3. (a) The forward scheme is unstable in the region with positive wave speed:
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(b) The backward scheme is unstable in the region with negative wave speed:
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(c) The upwind scheme is stable in both regions, and produces a reasonably accurate approxi-
mation to the solution. However, a small effect due to the boundary conditions
u(t,−5) = u(t, 5) = 0 can be seen in the final plot.
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5.3.8. (a) Since c > 0, we adapt the backwards scheme (5.44), leading to the iterative step

uj+1,m = (1− σ −∆t)uj,m + σuj,m−1,

subject to the boundary condition u(t, a) = 0.

(b) We choose ∆x = ∆t = .01 and work on the interval −4 ≤ x ≤ 4. The resulting n
umerical solution gives a reasonably good approximation to the actual solution: a damped
wave moving with wave speed c = .75.
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5.4.1. (a) For ∆x = .1, we must have 0 < ∆t < .0125.

(b) Setting ∆t = .01, we plot the solution at times t = 0, .05, .1, .15, .2, . . . , .75, which is
the time at which the analytical solution repeats periodically:
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The solution has the basic features correct, but clearly is not particularly accurate.
Setting ∆t = .015, we plot the solution at t = .015, .03, .06, .075:
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which is clearly unstable.
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(c) For ∆x = .01, we choose ∆t = .001, leading to a considerably more accurate solution,
again plotted at t = 0, .05, .1, . . . , .75:
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♠ 5.5.1. According to Exercise 4.3.10(a), the exact solution is

u(x, y) =
3 sin x sinh(π − y)

4 sinh π
− sin 3x sinh 3(π − y)

4 sinh 3π
,

with graph
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Plotting the finite difference approximations based on n = 4, 8 and 16 mesh points:

The maximal absolute errors between the approximations and the exact solution on the
mesh points are, respectively, .03659, .01202, .003174. Each reduction in mesh size by a
factor of 1

2 leads to an reduction in the error by approximately 1
4 , indicative of a second

order scheme.

♣ 5.5.6. (a) At the 5 interior nodes on each side of the central square C, the computed tempera-
tures are 20.8333, 41.6667, 45.8333, 41.6667, 20.8333:

(b) (i) The minimum temperature on C is 20.8333, achieved at the four corners;
(ii) the maximum temperature is 45.8333, achieved at the four midpoints;
(iii) the temperature is not equal to 50◦ anywhere on C.
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Student Solutions to

Chapter 6: Generalized Functions and Green’s Functions

6.1.1. (a) 1, (c) e.

6.1.2. (a) ϕ(x) = δ(x);
∫ b

a
ϕ(x) u(x) dx =

{
u(0), a < 0 < b,

0, 0 < a < b or a < b < 0.
(c) ϕ(x) = 3 δ(x− 1) + 3 δ(x+ 1);

∫ b

a
ϕ(x)u(x) dx =





3u(1) + 3u(−1), a < −1 < 1 < b,

3u(1), −1 < a < 1 < b,

3u(−1), a < −1 < b < 1,

0,
1 < a < b or − 1 < a < b < 1

or a < b < −1.

6.1.4. (a) f ′(x) = − δ(x+ 1)− 9 δ(x− 3) +





2x, 0 < x < 3,

1, −1 < x < 0,

0, otherwise.
-2 -1 1 2 3 4

-6

-4

-2

2

4

6

6.1.6. (b) f ′(x) =





−1 x < 0,

3, 0 < x < 1,

1, x > 1,

= −1 + 4 σ(x)− 2σ(x− 1), f ′′(x) = 4 δ(x)− 2 δ(x− 1).

6.1.11. (a) x δ(x) = lim
n→∞

nx

π (1 + n2x2)
= 0 for all x, including x = 0. Moreover, the functions

are all bounded in absolute value by 1
2 , and so the limit, although nonuniform, is to an

ordinary function.

(b) 〈u(x) ;x δ(x) 〉 =
∫ b

a
u(x)x δ(x) dx = u(0) 0 = 0 for all continuous functions u(x), and

so x δ(x) has the same dual effect as the zero function: 〈u(x) ; 0 〉 = 0 for all u.

6.1.13. (a) When λ > 0, the product λx has the same sign as x, and so

σ(λx) =

{
1, x > 0,

0, x < 0,
= σ(x).

(b) If λ < 0, then σ(λx) =

{
1, x < 0,

0, x > 0,
= 1− σ(x).

(c) Differentiate using the chain rule: If λ > 0, then δ(x) = σ′(x) = λσ′(λx) = λ δ(λx),
while if λ < 0, then δ(x) = σ′(x) = −λσ′(λx) = −λ δ(λx). Q.E.D.
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6.1.17. (a) Differentiating (6.32):

δ ′′(x) = lim
n→∞

6n5x2 − 2n3

π (n2x2 + 1)3
.

Graphs for n = 5, 10, 15, 20 are as follows, where the vertical range is −5, 500 to 2, 000:

(b)
∫ b

a
δ ′′(x)(x)u(x) dx = u′′(0), for any u ∈ C2[a, b ] and any interval with a < 0 < b.

(If a < b < 0 or 0 < a < b, the result is 0.)

♦ 6.1.21. (a) For a < 0 < b and any test function u(x) on [a, b ],

〈 f δ ′ ;u 〉 =
∫ b

a
u(x) f(x) δ ′(x) dx = − [u(x) f(x) ]′

∣∣∣
x=0

= −u′(0) f(0)− u(0) f ′(0)

=
∫ b

a

[
u(x) f(0) δ ′(x)− u(x) f ′(0) δ(x)

]
dx = 〈 f(0) δ ′ − f ′(0) δ ;u 〉.

6.1.22. (a) ϕ(x) = −2 δ ′(x)− δ(x),
∫ ∞

−∞
ϕ(x) u(x) dx = 2u′(0)− u(0).

6.1.27.
δ(x− ξ) ∼ 1

2π

∞∑

k=−∞
e ik (x−ξ) =

1

2π

∞∑

k=−∞
e− i kξ e i kx

∼ 1

2π
+

1

π

∞∑

k=1

[
cos kξ cos kx+ sin kξ sin kx

]
.

They both represent the 2π–periodic extension of δ(x− ξ), namely
∞∑

n=−∞
δ(x− ξ − 2nπ).

6.1.34. (a) One way is to define it as the limit δ̃(x) = lim
n→∞

Gn(x), where Gn(x) denotes the

2π–periodic extension of the function gn(x) =
n

π(1 + n2x2)
appearing in (6.10). Alter-

natively, we can set δ̃(x) = lim
n→∞

Ĝn(x), where

Ĝn(x) =
∞∑

k=1

gn(x− 2kπ) =
∞∑

k=1

n

π
[
1 + n2(x− 2kπ)2

] ,

which can be proven to converge through application of the integral test.
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(b) Let h(x) be a C∞ function with compact support: supp h ⊂ [a, b ], so that h(x) = 0 for
x ≤ a or x ≥ b. Then ∫ ∞

−∞
δ̃(x) u(x) dx =

∑

k

u(2kπ),

where the (finite) sum is over all multiples of 2π such that a ≤ 2kπ ≤ b.

♦ 6.1.38. It suffices to note that if u(x) is any smooth function on [a, b ], then

lim
n→∞

∫ b

a
u(x) cosnxdx = 0 by the Riemann–Lebesgue Lemma 3.40. Q.E.D.

6.1.40. (a) True.

6.2.1. To determine the Green’s function, we must solve the boundary value problem

−c u′′ = δ(x− ξ), u(0) = 0, u′(1) = 0.

The general solution to the differential equation is

u(x) = − ρ(x− ξ)

c
+ ax+ b, u′(x) = − σ(x− ξ)

c
+ a.

The integration constants a, b are fixed by the boundary conditions

u(0) = b = 0, u′(1) = − 1

c
+ a = 0.

Therefore, the Green’s function for this problem is

G(x; ξ) =

{
x/c, x ≤ ξ,

ξ/c, x ≥ ξ.

The superposition principle implies that the solution to the boundary value problem is

u(x) =
∫ 1

0
G(x; ξ)f(ξ) dξ =

1

c

∫ x

0
ξ f(ξ) dξ +

x

c

∫ 1

x
f(ξ) dξ.

To verify the formula, we use formula (6.55) to compute

u′(x) = xf(x)− xf(x) +
1

c

∫ 1

x
f(ξ)dξ =

1

c

∫ 1

x
f(ξ)dξ, u′′(x) = − 1

c
f(x).

Moreover,

u(0) =
1

c

∫ 0

0
ξ f(ξ) dξ +

0

c

∫ 1

0
ξ f(ξ)dξ = 0, u′(1) =

1

c

∫ 1

1
f(ξ) dξ = 0. Q .E .D.

6.2.3. .5 mm — by linearity and symmetry of the Green’s function.

6.2.9. True — the solution is u(x) = 1.

6.2.11. (a) G(x; ξ) =





sinhωx coshω (1 − ξ)

ω coshω
, x ≤ ξ,

coshω (1− x) sinhωξ

ω coshω
, x ≥ ξ.

(b) If x ≤ 1
2 , then

u(x) =
∫ x

0

coshω (1− x) sinhωξ

ω coshω
dξ +

∫ 1/2

x

sinhωx coshω (1− ξ)

ω coshω
dξ

−
∫ 1

1/2

sinhωx coshω (1− ξ)

ω coshω
dξ

=
1

ω2
−
(
eω/2 − e−ω/2 + e−ω

)
eωx +

(
eω − eω/2 + e−ω/2

)
e−ωx

ω2(eω + e−ω)
,
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while if x ≥ 1
2 , then

u(x) =
∫ 1/2

0

coshω (1− x) sinhωξ

ω coshω
dξ −

∫ x

1/2

coshω (1− x) sinhωξ

ω coshω
dξ

−
∫ 1

x

sinhωx coshω (1 − ξ)

ω coshω
dξ

= − 1

ω2
+

(
e−ω/2 − e−ω + e−3ω/2

)
eωx +

(
e3ω/2 − eω + eω/2

)
e−ωx

ω2(eω + e−ω)
.

♦ 6.3.1. At a point x ∈ CR, the corresponding unit normal is n = x/R. Thus,

∂f

∂n
= n · ∇f =

x

R
· ∇f =

x

R

∂f

∂x
+
y

R

∂f

∂y
= cos θ

∂f

∂x
+ sin θ

∂f

∂y
=
∂f

∂r

by the chain rule. See also (4.104).

♦ 6.3.5. According to Exercise 6.1.13(c),

δ(β x, β y) = δ(β x) δ(β y) =
1

|β |2 δ(x) δ(y) =
1

β2
δ(x, y).

6.3.9. We rewrite f(x, y) = σ(3x− 2y− 1) in terms of the step function. Thus, by the chain rule,

∂f

∂x
= 3 δ(3x− 2y − 1) = δ

(
x− 2

3 y − 1
3

)
,

∂f

∂y
= −2 δ(3x− 2y − 1) = − δ

(
y − 3

2 y +
1
2

)
.

6.3.12. There is no equilibrium since (6.90) is not satisfied. Physically, you cannot remain in equi-
librium while energy is continually flowing into the plate through its boundary.

6.3.15. (a)

u(r, θ) =
1

4π

∫ 2π

0

∫ 1/2

0
log


 1 + r2ρ2 − 2rρ cos(θ − ϕ)

r2 + ρ2 − 2rρ cos(θ − ϕ)


 ρ dρ dϕ

=
1

4π

∫ 2π

0

∫ 1/2

0
log


 1 + r2ρ2 − 2rρ cosϕ

r2 + ρ2 − 2rρ cosϕ


 ρ dρ dϕ,

where the second expression follows upon replacing the integration variable ϕ by ϕ − θ.
The latter formula does not depend on θ, and hence the solution is radially symmetric,
which is a consequence of the radial symmetry of the forcing function.

(b) Since the solution u(r) is radially symmetric, it satisfies the ordinary differential
equation

urr +
1
r
ur =





1, r < 1
2 ,

0, 1
2 < r < 1,

u(1) = 0.

Setting v = ur reduces this to a first-order ordinary differential equation, with solution

ur = v =





1
2 r + a/r, r < 1

2 ,

b/r, 1
2 < r < 1,

=





1
2 r, r < 1

2 ,

1/(8r), 1
2 < r < 1,

where the integration constant a = 0 because ur cannot have a singularity at the origin,
while b = 1

8 because ur is continuous at r = 1
2 . Integrating a second time produces the
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solution:

u =





1
4 r

2 + c, r < 1
2 ,

1
8 log r + d, 1

2 < r < 1,
=





1
4 r

2 − 1
16 + 1

8 log 2, r < 1
2 ,

1
8 log r, 1

2 < r < 1,

where d = 0 due to the boundary condition u(1) = 0, while c = 1
8 log 1

2 − 1
16 because ur

is continuous at r = 1
2 .

♥ 6.3.18. (a) Using the image point (ξ,−η), we find G(x, y; ξ, η) =
1

4π
log

(x− ξ)2 + (y − η)2

(x− ξ)2 + (y + η)2
.

(b) u(x, y) =
1

4π

∫ ∞

0

∫ ∞

−∞
1

1 + η
log

(x− ξ)2 + (y − η)2

(x− ξ)2 + (y + η)2
dξ dη.

♠ 6.3.25. (a) According to (6.116), the potential is

u(x, y) = − 1

4π

∫ 1

−1

∫ 1

−1
log

[
(x− ξ)2 + (y − η)2

]
dη dξ.

The gravitational force is its gradient ∇u, with components
∂u

∂x
(x, y) = − 1

2π

∫ 1

−1

∫ 1

−1

x− ξ

(x− ξ)2 + (y − η)2
dη dξ,

∂u

∂x
(x, y) = − 1

2π

∫ 1

−1

∫ 1

−1

y − η

(x− ξ)2 + (y − η)2
dη dξ.

(b) Using numerical integration we find:

u(2, 0) ≈ −.4438, ∇u(2, 0) ≈ (−.3134, 0 )T , ‖∇u(2, 0) ‖ ≈ .3134,

u
(√

2 ,
√
2
)
≈ −.4385, ∇u

(√
2 ,

√
2
)
≈ ( .2292, .2292 )T , ‖∇u

(√
2 ,

√
2
)
‖ ≈ .3241.

So the gravitational force at
(√

2 ,
√
2
)
is slightly stronger, in part because it is closer

to the edge of the square.

6.3.27. The solution

u(t, x) = 1
2 δ(x− ct− a) + 1

2 δ(x+ ct− a) (∗)
consists of two half-strength delta spikes traveling away from the starting position con-
centrated on the two characteristic lines. It is the limit of a sequence of classical solu-
tions u(n)(t, x) → u(t, x) as n → ∞ which have initial conditions that converge to the
delta function:

u(n)(0, x) −→ δ(x− a), u
(n)
t (0, x) = 0.

For example, using (6.10), the initial conditions

u(n)(0, x) =
n

π(1 + n2(x− a)2)

lead to the classical solutions

u(n)(t, x) =
n

2π(1 + n2(x− ct− a)2)
+

n

2π(1 + n2(x+ ct− a)2)

that converge to the delta function solution (∗) as n→ ∞.
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Student Solutions to

Chapter 7: Fourier Transforms

7.1.1. (b)

√
2

π

e i k

k2 + 1
; (d)

i√
2π (k + 3 i )

− i√
2π (k − 2 i )

=
5√

2π (k − 2 i )(k + 3 i )
.

7.1.2. (b)

√
2

π

1

x2 + 1
.

♦ 7.1.5. (a)
√
2π δ(k − ω);

(b) F [ cosωx ] =

√
π

2

[
δ(k + ω) + δ(k − ω)

]
; F [ sinωx ] = i

√
π

2

[
δ(k + ω)− δ(k − ω)

]
.

7.1.7.

1

2π

∫ ∞

−∞
a cos kx+ k sin kx

a2 + k2
dk =





e−ax, x > 0,

1
2 , x = 0,

0, x < 0,

1

2π

∫ ∞

−∞
a sin kx− k cos kx

a2 + k2
dk = 0.

The second identity follows from the fact that the integrand is odd.

♦ 7.1.12. (a) If f(x) = f(−x), then, using Exercise 7.1.10(a), f̂(k) = f̂(−k).

(b) If f(x) = f(x), then by Exercise 7.1.10(b), f̂(k) = f̂(−k) ; if, in addition, f(x) is even,

so is f̂(k) and so f̂(k) = f̂(k) is real and even.

7.1.16. (a) f̂(k − a).

♦ 7.1.17. (a) f(x) ∼ 1

2π

∫ ∞

−∞
f̂1(k) e

ikx dk , (b) f̂1(k) =
√
2π f̂(k).

♥ 7.1.19. (i) Using Euler’s formula (3.59)

f̂(k) =
1√
2π

∫ ∞

−∞
f(x) (cos kx− i sin kx) dx

=
∫ ∞

−∞
f(x) cos kx dx− i

∫ ∞

−∞
f(x) sin kx dx = ĉ(k)− i ŝ(k).

(ii) (b) ĉ(k) =

√
2

π

cos k

k2 + 1
, ŝ(k) = −

√
2

π

sin k

k2 + 1
.

♦ 7.1.20. (a) (i)
2

π(k2 + 1)(l2 + 1)
. (c) f(x, y) =

1

2π

∫ ∞

−∞

∫ ∞

−∞
f̂(k, l) e i (kx+ly) dl dk.

7.2.1. (a) e−k2/2, (d) i
√
2π δ ′(k).
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7.2.3. (b)
i

2
√
2
x e−x2/4.

♦ 7.2.8. − i

(∫ k

−∞
f̂(l) dl − 1

2

∫ ∞

−∞
f̂(k) dk

)
= − i

(∫ k

−∞
f̂(l) dl −

√
π

2
f(0)

)
.

7.2.9. (a) − i

√
π

2
sign k.

7.2.13. (a)

√
π

2
δ(k + 1)−

√
2π δ(k) +

√
π

2
δ(k − 1).

7.3.1. (a)
i

7

√
π

2

(
e6 ix − e− ix

)
sign x.

7.3.3. (b) i

√
π

2
(e− | k | − 1) sign k.

♦ 7.3.6. (a) u(x) = 1
2 e

− |x |(1 + |x |
)
.

(b) Using l’Hôpital’s Rule:

lim
ω→ 1

e− |x | − ω−1 e−ω |x |

ω2 − 1
= lim

ω→ 1

|x | e−ω |x | + ω−2 e−ω |x |

2ω
= 1

2 (1 + |x | ) e− |x |.

7.3.10. (a) ĥ(k) =

√
2

k2 + 1
e−k2/4;

(b) h(x) =

√
π 4
√
e

2

(
e−x

[
1− erf

(
1
2 − x

) ]
+ ex

[
1− erf

(
1
2 + x

) ] )
.

7.3.14. (a) f̂(k) =
1 + e− iπk

√
2π (1− k2)

, ĝ(k) =
i k(1 + e− iπk)√

2π (1− k2)
;

(b) h(x) =
(

1
2 π − 1

2 |x− π |
)
sinx; (c) ĥ(k) =

√
2π f̂(k) ĝ(k) =

i k(1 + e− i πk)2√
2π (1− k2)2

.

♦ 7.3.22. (b) f ∗ [a g + b h ](x) =
∫ ∞

−∞
f(x− ξ) [a g(ξ) + b h(ξ) ] dξ

= a
∫ ∞

−∞
f(x− ξ) g(ξ) dξ + b

∫ ∞

−∞
f(x− ξ) g(ξ) dξ = a [f ∗ g(x) ] + b [f ∗ h(x) ].

The second bilinearity identity is proved by a similar computation, or by using the
symmetry property:

(af + bg) ∗ h = h ∗ (af + bg) = a(h ∗ f) + b(h ∗ g) = a(f ∗ h) + b(g ∗ h).

(d) f ∗ 0 =
∫ ∞

−∞
f(x− ξ) 0 dξ = 0.
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7.4.1. (a) 2 =
∫ 1

−1
dx =

2

π

∫ ∞

−∞
sin2 k

k2
dk;

(b) Since the integrand is even,
∫ ∞

0

sin2 x

x2
dx =

1

2

∫ ∞

−∞
sin2 x

x2
dx =

π

2
.

♦ 7.4.6.

‖ f ‖2 =
∫ ∞

−∞
| f(x) |2 dx =

∞∑

n=−∞
n6=0

∫ n+n−2

n−n−2
dx = 2

∞∑

n=1

2

n2
=

2

3
π2 <∞,

and so f ∈ L2. However f(x) 6−→ 0 as x → ±∞ since f(n) = 1 for arbitrarily large
(positive and negative) integers n.

7.4.9. (a) a = 1; (b) ‖xϕ(x) ‖ ‖ϕ′(x) ‖ = 1√
2
· 1 = 1√

2
≥ 1

2 .
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Student Solutions to

Chapter 8: Linear and Nonlinear Evolution Equations

8.1.1. (a) u(t, x) =
1√

4 t + 1
e−x2/(4 t+1);

-10 -5 5 10

0.2

0.4

0.6

0.8

1

-10 -5 5 10

0.2

0.4

0.6

0.8

1

-10 -5 5 10

0.2

0.4

0.6

0.8

1

8.1.6. (a) The maximum occurs at x = ξ, where F (t, ξ; ξ) =
1

2
√
π t

.

(b) One justification is to look at where the solution has half its maximal value, which
occurs at x = ξ ± 2

√
t log 2 , and so, under this measure, the width is 4

√
t log 2 .

Alternatively, the width can be measured by the standard deviation. In general, the

Gaussian distribution
1√
2π σ

e−(x−ξ)2/(2σ2) has mean ξ and standard deviation σ.

Comparing with the fundamental solution (8.14), we find σ =
√
2 t .

8.1.10. (a) For the x derivative:

∂F

∂x
(t, x; ξ) =

ξ − x

4
√
π t3/2

e−(x−ξ)2/(4 t) has initial condition u(0, x) = δ ′(x− ξ).

(b) Plots of
∂F

∂x
(t, x; 0) at times t = .05, .1, .2, .5, 1., 2.:

-4 -2 2 4

-2

-1

1

2

-4 -2 2 4

-2

-1

1

2

-4 -2 2 4

-2

-1

1

2

-4 -2 2 4

-2

-1

1

2

-4 -2 2 4

-2

-1

1

2

-4 -2 2 4

-2

-1

1

2

(c)
∂F

∂x
(t, x; ξ) =

ξ − x

4
√
π t3/2

e−(x−ξ)2/(4 t) =
i

2π

∫ ∞

−∞
k e−k2 t e i k(x−ξ) dk.
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8.1.17. F (t, x; ξ) =
1

2
√
πγ t

e−(x−ξ)2/(4γ t)−α t.

8.1.22. (a) ‖ e−ak2

f̂(k) ‖2 =
∫ ∞

−∞
e−2ak2

| f̂(k) |2 dk ≤
∫ ∞

−∞
| f̂(k) |2 dk = ‖ f̂(k) ‖2 <∞.

(b) This follows immediately from part (a) and the Plancherel formula (7.64).

8.1.23. In this case, the initial condition is

z(0, y) = e(κ−1)y/2max{p− ey, 0},
and so

z(τ, y) =
1

2
√
π τ

∫ log p

0
e−(y−η)2/(4τ)+(κ−1)η/2(p− eη) dη

=
1

2

[
e(κ+1)2τ/4+(κ+1)y/2 erfc

(
(κ+ 1)τ + y − log p

2
√
τ

)

− p e(κ−1)2τ/4+(κ−1)y/2 erfc

(
(κ− 1)τ + y − log p

2
√
τ

)]
.

Thus,

u(t, x) =
1

2


 p e−r(t⋆−t) erfc




(
r − 1

2 σ
2
)
(t⋆ − t) + log(x/p)

√
2σ2(t⋆ − t)




− x erfc




(
r + 1

2 σ
2
)
(t⋆ − t) + log(x/p)

√
2σ2(t⋆ − t)





 .

8.2.1. 92 minutes.

8.2.5. U(t, x) = 5
9 [u(t, x)− 32] + 273.15 = 5

9 u(t, x) + 255.372. Changing the temperature scale

does not alter the diffusion coefficient.

8.2.8. Using time translation symmetry, u(t, x) = u⋆(t + 1, x) also solves the heat equation and
satisfies u(0, x) = u⋆(1, x) = f(x).

8.2.9. (a) The fundamental solution F (t, x) =
1

2
√
π t

e−x2/(4 t) satisfies F (1, x) =
1

2
√
π
e−x2/4.

Therefore, by Exercise 8.2.8,

u(t, x) = 2
√
π F (t+ 1, x) =

1√
t+ 1

e−x2/[ 4(t+1)].

8.2.11. (b) Scaling symmetries: U(t, x) = β(c−1)/2 u(β−1 t, β−c x) for any constant c; similarity

ansatz: u(t, x) = t(c−1)/2v(ξ) where ξ = x t−c; reduced ordinary differential equation:

(v2 − cξ)v′ + 1
2 (c − 1)v = 0. If c = 1, then v =

√
ξ or constant, and u(t, x) =

√
x/t

or constant. For c 6= 1, the implicit solution is ξ = v2 + kv2+2/(c−1) where k is the

integration constant, and so x = t u2 + k u2c/(c−1).

8.2.12. (a) Set U(t, x) = u(t− a, x). Then, by the chain rule,

∂2U

∂t2
− c2

∂2U

∂x2
=
∂2u

∂t2
− c2

∂2u

∂x2
= 0.
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8.2.15. (a) Scaling symmetries: (x, y, u) 7−→ (β x, β y, βcu) for any constant c, producing the
rescaled solution U(t, x) = βcu(β−1 x, β−1 y).

(b) The similarity ansatz is u(t, x) = xc v(ξ) where ξ = y/x. Substituting into the Laplace
equation produces the reduced ordinary differential equation

(ξ2 + 1)v′′ − 2(c− 1)ξ v′ + c(c− 1)v = 0.

(c) The general solution to the reduced ordinary differential equation can be written as
v(ξ) = Re [k (1 + i ξ)c ], where k = k1 + i k2 is an arbitrary complex constant. The cor-
responding similarity solutions to the Laplace equation are u(x, y) = Re [k (x+ i y)c ].
In particular, if c = n is an integer, one recovers the harmonic polynomials of degree n.

8.3.1. True. This follows immediately from Corollary 8.7, with m > 0 being the minimum of the
initial and boundary temperatures.

8.3.3. First note that M(t) ≥ 0 for t > 0, since u(t, a) = u(t, b) = 0. Given 0 < t1 < t2, the
Maximum Principle applied to the rectangle R = { t1 ≤ t ≤ t2, a ≤ x ≤ b} implies that
the maximum of u(t, x) on R equals M(t1) ≥ 0. Therefore,

M(t2) = max { u(t2, x) | a ≤ x ≤ b } ≤ M(t1).

8.4.1. (b)

u(t, x) = 1−
1 + erf

(
x

2
√
t

)

1 + erf

(
x

2
√
t

)
+ et/4−x/2

[
1− erf

(
x− t

2
√
t

)]

=

1− erf

(
x− t

2
√
t

)

1− erf

(
x− t

2
√
t

)
+ ex/2−t/4

[
1 + erf

(
x

2
√
t

)] ,

8.4.8. (a) Setting U(t, x) = λu(α−1 t, β−1 x), we find

∂U

∂t
=
λ

α

∂u

∂t
,

∂U

∂x
=
λ

β

∂u

∂x
,

∂2U

∂x2
=

λ

β2
∂2u

∂x2
.

Thus U(t, x) solves the rescaled Burgers’ equation

Ut +
β

αλ
U Ux =

β2γ

α
Uxx .

(b) In light of part (a), setting α = 1, β =

√
σ

γ
, λ =

1

ρ

√
σ

γ
, we find that

U(t, x) = λu(t, β−1 x) =
1

ρ

√
σ

γ
u

(
t,

√
σ

γ
x

)
,

where u(t, x) solves the initial value problem

ut + uux = γ uxx, u(0, x) = f(x) =
1

ρ

√
σ

γ
F

(√
σ

γ
x

)
.

Thus, u(t, x) is given by (8.84), from which one can can reconstruct the solution U(t, x)
by the preceding formula.
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8.4.10. (b) ϕt = γ [ϕxx − ϕ2
x/(2ϕ) ].

8.5.1. Since u(− t,−x) solves the dispersive equation, the solution is a mirror image of its values
in positive time. Thus, the solution profiles are

t = −.1 t = −.5 t = −1

8.5.4. (b) Dispersion relation: ω = −k5; phase velocity: cp = −k4;
group velocity: cg = −5k4; dispersive.

♦ 8.5.7. (a) Conservation of mass:
∂

∂t
u+

∂

∂x
uxx = 0,

and hence the mass flux is X = uxx. We conclude that the total mass
∫ ∞

−∞
u(t, x) dx = constant,

provided the flux goes to zero at large distances: uxx → 0 as |x | → ∞.

8.5.12. (a) Using the chain rule, Ut = ut − cux = −uxxx − (u+ c)ux = −Uxxx − U Ux.

(b) It can be interpreted as the effect of a Galilean boost to a moving coordinate frame
with velocity c; the only change in the solution is to shift its height above the x axis.

8.5.16. (a) u(t, x) =
√
6c sech [

√
c (x− ct) + δ ]; (b) the amplitude is proportional to the square

root of the speed, while the width is proportional to 1/
√
c .

♦ 8.5.18. (a) The corresponding flux is X1 = uxx + 1
2 u

2, and the conservation law is

∂T1
∂t

+
∂X1

∂x
= ut + uxxx + uux = 0.
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Student Solutions to

Chapter 9: A General Framework for

Linear Partial Differential Equations

9.1.1. (a)

(
1 −1
2 3

)
, (c)




13
7 − 10

7
5
7

15
7


.

9.1.2. Domain (a), target (b):

(
2 −3
4 9

)
; domain (b), target (c):




3
2 − 5

2
1
3

10
3


.

9.1.3. (b)




1 −2 0
1
2 0 − 3

2

0 2
3 2


.

9.1.4. Domain (a), target (b):



1 −2 0
1 0 −3
0 2 6


.

9.1.5. Domain (a), target (a):

(
1 0 −1
3 2 1

)
; domain (b), target (c):

(
1 0 −1
8
3

8
3

4
3

)
.

9.1.9. (a) L∗[v ] = − d

dx

[
x v(x)

]
+ v(x) = −xv′(x).

♦ 9.1.13. (a) Given L:U → V , for any u ∈ U, v1, v2 ∈ V, c1, c2 ∈ R, we use (9.2) to compute

〈u ;L∗[c1v1 + c2v2 ] 〉 = 〈〈L[u ] ; c1v1 + c2v2 〉〉 = c1〈〈L[u ] ; v1 〉〉+ c2〈〈L[u ] ; v2 〉〉
= c1〈u ;L

∗[v1 ] 〉+ c2〈u ;L
∗[v2 ] 〉 = 〈u ; c1L

∗[v1 ] + c2L
∗[v2 ] 〉.

Since this holds for all u ∈ U , we conclude that

L∗[c1v1 + c2v2 ] = c1L
∗[v1 ] + c2L

∗[v2 ].

♦ 9.1.15. Given u ∈ U and v ∈ V , we have

〈〈 (L∗)∗[u ] ; v 〉〉 = 〈u ;L∗[v ] 〉 = 〈〈L[u ] ; v 〉〉.
Since this holds for all u and v, we conclude that (L∗)∗ = L. Q.E.D.

9.1.18. (b) The cokernel of A =

(
6 −3 9
2 −1 3

)
has basis v =


− 1

3

1


. Since v ·

(
6
2

)
= 0, the

system is compatible. The general solution is x = 1
2 y − 3

2 z + 1, where y, z are arbitrary.

9.1.19. (a) 2a− b+ c = 0.

9.1.21. Under the L2 inner product, the adjoint system xv′′ + v′ = 0, v′(1) = v′(2) = 0, has

constant solutions, so the Fredholm constraint is 〈 1 ; 1− 2
3 x 〉 =

∫ 2

1

(
1− 2

3 x
)
dx = 0.

Writing the equation as D(xu′) = 1− 2
3 x, we have u′ = 1− 1

3 x+c/x, with the boundary
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conditions requiring c = − 2
3 . Thus, the solution is u(x) = x − 1

6x
2 − 2

3 log x + a, where
a is an arbitrary constant.

9.1.25. Since (∇· )∗ = −∇, the homogeneous adjoint problem is −∇u = 0 in Ω with no boundary
conditions. Since Ω is connected, every solutions is constant, and therefore, the

Fredholm Alternative requires 0 = 〈 f ; 1 〉 =
∫∫

Ω
f(x, y) dx dy.

9.2.1. (a) Self-adjoint; (c) not self-adjoint.

9.2.2. (i) (a) Self-adjoint; (c) not self-adjoint.

♦ 9.2.5. (a) Since CT = C, we have JT = KTC = J = CK if and only if K satisfies the require-
ment of Example 9.15.

(b) By definition, K > 0 if and only if

0 < 〈u ;Ku 〉 = u
TCKu = u

T J u for all 0 6= u ∈ R
n,

which holds if and only if J > 0 with respect to the dot product. Q.E.D.

9.2.10. We need to impose two boundary conditions at each endpoint. Some common possibilities
are to require either

u(a) = v(a) = 0 or u(a) = v′(a) = 0 or v(a) = v′(a) = 0 or u′(a) = v′(a) = 0

at the left hand endpoint, along with a second pair

u(b) = v(b) = 0 or u(b) = v′(b) = 0 or v(b) = v′(b) = 0 or u′(b) = v′(b) = 0

at the other end. One can mix or match the options in any combination. Once we iden-
tify v(x) = u′′(x), this produces 4 boundary conditions on the functions u in the domain
of S, which always positive semi-definite, and is positive definite if and only if at least
one of the boundary conditions requires that u vanish at one of the endpoints.

♥ 9.2.13. (a) We define ∇:V → W , where V is the vector space consisting of scalar functions u(x, y)
defined for 0 < x < a, 0 < y < b, and satisfying

u(x, 0) = u(x, b), uy(x, 0) = uy(x, b), u(0, y) = u(a, y), ux(0, y) = ux(a, y),

while W is the set of vector fields

v(x, y) = ( v1(x, y), v2(x, y) )
T satisfying v2(x, 0) = v2(x, b), v1(0, y) = v2(a, y).

The boundary integral in the basic integration by parts identity (9.33) reduces to
∮

∂Ω

(
−uv2 dx+ uv1 dy

)
= −

∫ a

0
u(x, 0) v2(x, 0) dx+

∫ b

0
u(a, y) v2(a, y) dy

+
∫ a

0
u(x, b) v2(x, b) dx−

∫ b

0
u(0, y) v2(0, y) dy = 0,

by the boundary conditions. This is the key point to proving (9.27), and hence writing
the boundary value problem in self-adjoint form (9.60).

(b) The problem is not positive definite, because any constant function satisfies the
boundary conditions, and hence belongs to ker∇ 6= {0}.

(c) By the Fredholm Alternative, f must be orthogonal to the kernel, and hence must
satisfy the condition

〈 f ; 1 〉 =
∫ a

0

∫ b

0
f(x, y) dy dx = 0.
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9.3.1. (a) u⋆(x) =
1
6 x− 1

6 x
3; (b) Q[u ] =

∫ 1

0

[
1
2 (u

′)2 − xu
]
dx, u(0) = u(1) = 0;

(c) Q[u⋆ ] = − 1
90 = − .01111; (d) Q[cx− cx3 ] = 2

5 c
2 − 2

15 c > − 1
90 for constant c 6= 1

6 ,

while, for example, Q[cx− cx2 ] = 1
6 c

2 − 1
12 c ≥ − 1

96 = − .01042 > − 1
90 , for all c, and

Q[c sinπx ] =
π2 c2

4 − c
π ≥ − 1

π4
= − .01027 > − 1

90 , also for all c.

9.3.4. (b) Boundary value problem: −((x+ 1)u′)′ = 5, u(0) = u(1) = 0;

solution/minimizer: u⋆(x) =
5

log 2
log(x+ 1)− 5x.

9.3.5. (a) Unique minimizer: u⋆(x) =
1

2
x2 − 2x+

3

2
+

log x

2 log 2
.

(d) No minimizer since 1− x2 is not positive for all −2 < x < 2.

9.3.7. u(x) =
1

9
− e3x/2 + e3−3x/2

9(e3 + 1)
; the solution is unique.

9.3.9. (b) (i) − d

dx

(
x
du

dx

)
+ 2u = 1.

(ii) Minimize Q[u ] =
∫ 2

1

[
1
2 xu

′(x)2 + 1
2 u(x)

2 − u(x)
]
dx with u(1) = u(2) = 0.

9.3.15. u(x) = x2 satisfies
∫ 1

0
u′′(x)u(x) dx = 2

3 . Positivity of
∫ 1

0

[
−u′′(x)u(x)

]
dx holds only for

functions that satisfy the boundary conditions u(0) = u(1).

♥ 9.3.18. (a) First, by direct calculation,

−∆u = − ∂2u

∂x2
− ∂2u

∂y2
= x2 + y2 − x− y.

Moreover, u(x, 0) = u(x, 1) = u(0, y) = u(1, y) = 0.

(b) Q[u ] =
∫ 1

0

∫ 1

0

[
1
2 ‖∇u ‖2 − (x2 + y2 − x− y) u

]
dx dy = − 1

360 ≈ −.002778.

(c) For example, Q[xy (1− x)(1− y) ] = 0, Q[x2y (1− x)(1− y) ] = − 11
6300 ≈ −.001746,

Q

[
− 32

π6
sin πx sin πy

]
= − 256

π10
≈ −0.002734.

9.3.23. Solving the corresponding boundary value problem

− d

dx

(
x
du

dx

)
= −x2, u(1) = 0, u(2) = 1, yields u(x) =

x3 − 1

9
+

2 log x

9 log 2
.

9.4.1. (b) Eigenvalues: 7, 3; eigenvectors:
1√
2

(
−1
1

)
,

1√
2

(
1
1

)
.

9.4.2. (a) Eigenvalues 5
2 ± 1

2

√
17 ; positive definite.
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9.4.5. (a) The minimum value is the smallest eigenvalue corresponding to the boundary value
problem −v′′ = λ v subject to the indicated boundary conditions: minimum = π2,
eigenfunction v(x) = sin πx.

♥ 9.4.9. (a) Eigenfunctions: un(x) = sin(nπ log x); eigenvalues: λn = n2π2.

(b) First note that the differential equation is in weighted Sturm–Liouville form (9.78) with
p(x) = x, ρ(x) = 1/x, q(x) = 0. Therefore, the relevant inner product is

〈 f ; g 〉 =
∫ e

1

f(x) g(x)
x

dx.

Indeed, the change of variables y = log x shows that

〈um ;um 〉 =
∫ e

1

sin(mπ log x) sin(nπ log x)

x
dx = 0 for m 6= n.

(c) f(x) ∼
∞∑

n=1

cn sin(nπ log x), where cn =
〈 f ;un 〉
‖un ‖2 = 2

∫ 1

0

f(x) sin(nπ log x)
x

dx.

(d) Closed form:
G(x; ξ) =




ξ−1(1− log ξ) log x, 1 ≤ x ≤ ξ,

ξ−1(1− log x) log ξ, ξ ≤ x ≤ e.
Eigenfunction series:

G(x; ξ) =
∞∑

n=1

2 sin(nπ log x) sin(nπ log ξ)

n2π2 ξ
.

(e) The Green’s function is not symmetric, but the modified Green’s function is:

Ĝ(x; ξ) = Ĝ(ξ;x) = ξ G(x; ξ) =

{
(1− log ξ) log x, 1 ≤ x ≤ ξ,

(1− log x) log ξ, ξ ≤ x ≤ e.

(f ) The double norm of the modified Green’s function is

‖ Ĝ ‖2 =
∫ e

1

∫ e

1

Ĝ(x; ξ)2

x ξ
dx dξ = 2

∫ e

1

∫ ξ

1

(1− log ξ)2(log x)2

x ξ
dx dξ =

1

90
< ∞.

Theorem 9.47 implies completeness of the eigenfunctions.

9.4.16. (a)

G(x, y; ξ, η) =
2

π2

∞∑

n=1

sinnπy sinnπη

m2
+

4

π2

∞∑

m=1

∞∑

n=1

cosmπx sinnπy cosmπξ sinnπη

m2 + n2
.

9.5.1. The eigenfunctions are vk(x) = sin kπx with eigenvalues λk = γ π2k2 and norms ‖ vk ‖2 =
∫ 1

0
sin2 kπx dx = 1

2 , for k = 1, 2, . . . . Therefore, by (9.128),

F (t, x; ξ) =
∞∑

k=1

2 e− γ π2k2 t sin kπx sin kπξ.

9.5.4. The eigenfunction boundary value problem is

v′′′′ = λ v, v(0) = v′′(0) = v(1) = v′′(1) = 0.

The eigenfunctions are vk(x) = sin kπx with eigenvalues λk = k4π4 for k = 1, 2, . . . .
The solution to the initial value problem is

u(t, x) =
∞∑

k=1

bk e
−k4π4t sin kπx,
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where bk = 2
∫ 1

0
f(x) sin kπxdx are the Fourier sine coefficients of f(x) on [0, 1]. The

equilibrium state is u(t, x) → 0, and the decay is exponentially fast, at a rate π4, as
given by the smallest eigenvalue.

9.5.9. (b) resonant, since 〈 1 ; sin 3πx 〉 =
∫ 1

0
sin 3πx dx =

2

3π
6= 0;

(d) resonant, since 〈 sinπx ; sin πx 〉 = 1
2 6= 0.

♦ 9.5.14. For nonresonant ω 6= ωk = k πc,

u(t, x) =
cosωt sin kπx− cos kπct sin kπx

ω2 − k2π2 c2

+
∞∑

k=1

[
bk cos kπc t sin kπx+ dk sin kπc t sin kπx

]
,

whereas for resonant ω = ωk = k πc,

u(t, x) =
t sin kπct sin kπx

2kπc
+

∞∑

k=1

[
bk cos kπc t sin kπx+ dk sin kπc t sin kπx

]
,

where, in both cases,

bk = 2
∫ 1

0
f(x) sin kπxdx, dk =

2

kπc

∫ 1

0
g(x) sin kπx dx,

are the Fourier sine coefficients of the initial displacement and velocity.

♦ 9.5.16. The function

ũ(t, x) = u(t, x)−
(
α(t) +

β(t)− α(t)

ℓ
x

)
,

satisfies the initial-boundary value problem

ũtt = c2ũxx + F (t, x), ũ(t, 0) = 0, ũ(t, ℓ) = 0,

ũ(0, x) = f(x)− α(0)− β(0)− α(0)

ℓ
x, ũt(0, x) = g(x)− α′(0)− β′(0)− α′(0)

ℓ
x,

with forcing function

F (t, x) = −α′′(t)− β′′(t)− α′′(t)
ℓ

x.

9.5.20. (a) ψ(t, x) =
4

π

∞∑

k=0

1

2k + 1
exp


− i

(2k + 1)2π2

~
t


 sin (2k + 1)π x.

(b) Using the Plancherel formula (7.64) and then (3.56), the squared norm is

‖ψ(t, · ) ‖2 =
8

π2

∞∑

k=0

1

(2k + 1)2
= 1.

♦ 9.5.25. Dispersion relation: ω = k2/~; phase velocity: cp = k/~; group velocity: cg = 2k/~.

c© 2017 Peter J. Olver



Student Solutions to

Chapter 10: Finite Elements and Weak Solutions

10.1.1. (a) Q[u ] =
∫ π

0

[
1
2 u

′(x)2 + (1− x)u(x)
]
dx; (b) −u′′ = x− 1, u(0) = u(π) = 0;

(c) u⋆(x) =
1
6 x(π − x)(x+ π − 3), Q[u⋆ ] = − 1

90 π
5 + 1

24 π
4 − 1

90 π
3 ≈ −.6334;

(d) When w(x) = c1 sin x+ c2 sin 2x, we have

Q[w ] = 1
4 πc

2
1 + πc22 + (2− π)c1 + 1

2 πc2 = P (c1, c2);

(e) w⋆(x) =
(
2− 4

π

)
sinx− 1

4
sin 2x, Q[w⋆ ] = 4− 4

π
− 17π

16
≈ −.6112 > Q[u⋆ ].

The maximum deviation between the two is ‖u⋆ − w⋆ ‖∞ ≈ .0680. In the accompanying
plot, u⋆ is in blue, and has a smaller maximum than w⋆, which is in purple:

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

♥ 10.1.5. (a) The solution to the corresponding boundary value problem

−[ (x+ 1)u′ ] ′ = 1, u(0) = u(1) = 0, is u⋆(x) =
log(x+ 1)

log 2
− x;

(b) Q[u ] =
∫ 1

−1

[
1
2 u

′(x)2 − (x2 − x)u(x)
]
dx on the space of C2 functions u(x) satisfying

u(−1) = u(1) = 0;

(c) w⋆(x) =
1

131 (20x− 55)x(x− 1), with ‖ u⋆ − w⋆ ‖2 ≈ .00728, ‖ u⋆ − w⋆ ‖∞ ≈ .0011.

(d) w⋆(x) =
1
89 (−7x2 + 21x− 39)x(x− 1), with ‖u⋆ − w⋆ ‖2 ≈ 1.59× 10−6 and

‖u⋆ − w⋆ ‖∞ ≈ 1.38 × 10−4. The second approximation has to be at least as good as
the first, because every cubic polynomial is an element of the larger quartic subspace:
W3 ⊂W4. In fact, it is significantly better.
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♠ 10.2.2. (a) Solution:

u(x) =





1
4 x, 0 ≤ x ≤ 1,

1
4 x− 1

2 (x− 1)2, 1 ≤ x ≤ 2;
maximal error at sample points: .05;
maximal overall error: .05.

0.5 1 1.5 2

0.05

0.1

0.15

0.2

0.25

0.3

♣ 10.2.4. The solution minimizes the quadratic functional

Q[u ] =
∫ 1

0

[
1
2 u

′(x)2 + 1
2 (x+ 1)u(x)2 − exu(x)

]
dx,

over all functions u(x) that satisfy the boundary conditions. We employ a uniform mesh
of step size h = 1/n. The finite element matrix entries are given by

kij =
∫ 1

0

[
ϕ ′
i (x)ϕ

′
j(x) + (x+ 1)ϕi(x)ϕj(x)

]
dx ≈





2

h
+

2h

3
(xi + 1), i = j,

− 1

h
+
h

6
(xi + 1), | i− j | = 1,

0, otherwise,

while

bi = 〈 xex ;ϕi 〉 =
∫ 1

0
xexϕi(x) dx ≈ xi e

xi h.

Here are the resulting approximations, based on 5, 10, 20 nodes:

0.2 0.4 0.6 0.8 1

0.02

0.04

0.06

0.08

0.1

0.2 0.4 0.6 0.8 1

0.02

0.04

0.06

0.08

0.1

0.2 0.4 0.6 0.8 1

0.02

0.04

0.06

0.08

0.1

10.3.1. Examples:

(b) (d)

10.3.4. (a) 1− y, 1− x, x+ y − 1.
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10.3.8. (a) k11 = 5
2 , k22 = 1, k33 = 1

2 , k12 = k21 = − 3
2 , k13 = k31 = −1, k23 = k32 = 1

2 ;

(c) k11 = 1
2
√
3
= .288675, k22 =

√
3
2 = .866025, k33 = 2√

3
= 1.154700,

k12 = k21 = 0, k13 = k31 = − 1
2
√
3
= −.288675, k23 = k32 = −

√
3
2 = −.866025.

10.3.10. True — they have the same angles, and so, by (10.46), their stiffnesses will be the same.

♠ 10.3.14. (a) u(x, y) =
sin x sinh(π − y)

sinh π
, with u

(
1
2 π,

1
2 π
)
=

sinh 1
2 π

sinh π
≈ .199268;

(b) K = ( 4 ), K̃ = (−1 −1 −1 −1 ), b = 0, h = ( 1, 0, 0, 0 )T .

The solution to (10.59) gives the value u
(
1
2 π,

1
2 π
)
≈ .331812, with error .132544.

(c) Ordering the interior nodes from left to right, and then bottom to top, and the
boundary nodes counterclockwise, starting at the bottom left:

K =




4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0
0 −1 4 0 0 −1 0 0 0

−1 0 0 4 −1 0 −1 0 0
0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4




,

K̃ =




−1 0 0 0 0 0 −1 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 −1 0 0 0 0 −1 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 −1




,

b = 0,

h = ( .707107, 1., .707107, 0, 0, 0, 0, 0, 0, 0, 0, 0 )T .

Now, u
(
1
2 π,

1
2 π
)
≈ .213388, with error .014120.

(d) u
(
1
2 π,

1
2 π
)
≈ .202915, with error .003647, so the finite element approximations appear

to be converging.
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♠ 10.3.18. (a) At the 5 interior nodes on each side of the central square C, the computed tempera-
tures are 20.8333, 41.6667, 45.8333, 41.6667, 20.8333:

(b) (i) The minimum temperature on C is 20.8333, achieved at the four corners;

(ii) the maximum temperature is 45.8333, achieved at the four midpoints;

(iii) the temperature is not equal to 50◦ anywhere on C.

10.4.1. (b) Semi-weak formulation:
∫ 2

0

[
−exu′(x) v′(x) +

(
u(x)− exu′(x)− cosx

)
v(x)

]
dx = 0

for all smooth test functions v(x) ∈ C1[0, 1] along with boundary conditions

u′(0) = u′(2) = v′(0) = v′(2) = 0.

Fully weak formulation:
∫ 2

0

[
u(x)

(
ex v′′(x) + 2ex v′(x) + (1 + ex)v(x)

)
− (cos x) v(x)

]
dx = 0

for all v(x) ∈ C2[0, 2] along with boundary conditions

u′(0) = u′(2) = v′(0) = v′(2) = 0.

♦ 10.4.7. Suppose f(t0, x0) > 0, say. Then, by continuity, f(t, x) > 0 for all x in some open ball

Bε =
{
(t, x)

∣∣∣ (t− t0)
2 + (x− x0)

2 < ε2
}

centered at (t0, x0). Choose v(t, x) to be a C1 function that is > 0 in Bε and = 0 out-
side; for example,

v(t, x) =





[
(x− x0)

2 + (t− t0)
2 − ε2

]2
, (t, x) ∈ Bε,

0, otherwise.

Thus f(t, x) v(t, x) > 0 inside Bε and is = 0 everywhere else, which produces the contra-
diction ∫ ∞

−∞

∫ ∞

−∞
f(t, x) v(t, x) dx dt =

∫∫

Bε

f(t, x) v(t, x) dt dx > 0. Q .E .D.
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Chapter 11: Dynamics of Planar Media

11.1.1.
∂u

∂t
= γ


 ∂2u

∂x2
+
∂2u

∂y2


 , x2 + y2 < 1, t > 0,

∂u

∂n
= 0, x2 + y2 = 1, t > 0,

u(0, x, y) =
√
x2 + y2 , x2 + y2 < 1.

For the Neumann boundary value problem, the equilibrium temperature is the average
value of the initial temperature, namely

1

π

∫∫

Ω

√
x2 + y2 dx dy =

1

π

∫ 2π

0

∫ 1

0
r2 dr dθ =

2

3
.

11.1.3. (a) 0.

♥ 11.1.6. (a) Using (6.85) with u = 1 and v = u,

dH

dt
=
∫∫

Ω

∂u

∂t
(t, x, y) dx dy = γ

∫∫

Ω
∆udxdy = γ

∮

∂Ω

∂u

∂n
ds = 0,

in view of the homogeneous Neumann boundary conditions. Since its derivative is
identically zero, we conclude that H(t) ≡ H(0) is constant.

(b) By part (a),

H(t) = H(0) =
∫∫

Ω
u(0, x, y) dx dy = T0 area Ω,

where

T0 =
1

area Ω

∫∫

Ω
u(0, x, y) dx dy

is the average initial temperature. On the other hand, as t→ ∞, the solution
approaches a constant equilibrium temperature, u(t, x, y) → T⋆. Thus,

T0 area Ω = lim
t→∞

H(t) =
∫∫

Ω
lim

t→∞
u(t, x, y) dx dy =

∫∫

Ω
T⋆ dx dy = T⋆ area Ω,

and hence T⋆ = T0.

11.1.11. (a) Define the linear operator L[u ] = (ux, uy, u)
T , so L:U → V maps the space of scalar

fields u(x, y) satisfying the Neumann boundary conditions to the space of vector-valued
functions v(x, y) = (v1(x, y), v2(x, y), v3(x, y))

T satisfying (v1, v2)
T · n = 0 on ∂Ω. Using

the L2 inner product on U and the L2 inner product

〈v ;w 〉 =
∫∫

Ω
v1(x, y)w1(x, y) + v2(x, y)w2(x, y) + v3(x, y)w3(x, y) dx dy

on V , the adjoint map L∗:V → U is given by L∗[v ] = − ∂v1
∂x

− ∂v2
∂y

+ α v3. Thus,

S[u ] = L∗ ◦L[u ] = −∆u + αu, which proves that the evolution equation is in self-
adjoint form: ut = −S[u ].
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(b) The operator L has trivial kernel, kerL = {0}, and so S = L∗ ◦L is positive definite.
This implies that the boundary value problem S[u ] = 0 for the equilibrium solution,
−∆u + αu = 0 subject to homogeneous Neumann boundary conditions, has a unique
solution, namely u ≡ 0.

11.2.1. u(t, x, y) = e−2π2t sin πx sinπy. The decay is exponential at a rate 2π2.

11.2.3. u(t, x, y) = − 4

π

∞∑

k=0

e−2(2k+1)2π2t sin(2k + 1)π(x+ 1)

2k + 1
.

♥ 11.2.8. (b)
5π2 γ

4a2
.

♥ 11.2.12. (a) The equilibrium solution u⋆(x, y) solves the Laplace equation, uxx + uyy = 0, subject
to the given boundary conditions: u(0, y) = u(π, y) = 0 = u(x, 0), u(x, π) = f(x). Thus,

u⋆(x, y) =
∞∑

m=1

bm sinmx
sinhmy

sinhmπ
, where bm =

2

π

∫ π

0
f(x) sinmxdx.

(b) u(t, x, y) = u⋆(x, y) + v(t, x, y), so that the “transient” v(t, x, y) solves the initial-
boundary value problem

vt = vxx + vyy, v(0, x, y) = −u⋆(x, y), v(0, y) = v(π, y) = 0 = v(x, 0) = v(x, π).

Thus, using Exercise 3.2.42, the transient is

v(t, x, y) =
2

π

∞∑

m,n=1

(−1)nn

m2 + n2
bm e−(m2+n2)t sinmx sinny,

which decays to zero exponentially fast at a rate of −2 provided b1 6= 0, or, more

generally, −(m2 + 1) when b1 = · · · = bm−1 = 0, bm 6= 0. Thus, the solution is

u(t, x, y) =
∞∑

m=1

bm sinmx
sinhmy

sinhmπ
+

2

π

∞∑

m,n=1

(−1)nn

m2 + n2
bm e−(m2+n2)t sinmx sinny.

11.3.1. (a) 3
4

√
π .

11.3.5. Use the substitution x = t1/3, with dx = 1
3 t

−2/3 dt to obtain the value
∫ ∞

0

√
x e−x3

dx =
1

3

∫ ∞

0
e−t t−1/2 dt = 1

3 Γ
(
1
2

)
= 1

3

√
π .

11.3.8. û(x) = 1 + 2(x− 1) + (x− 1)2 = x2,

ũ(x) = 1− (x− 1) + (x− 1)2 − (x− 1)3 − · · · =
∞∑

k=0

(−1)k(x− 1)k =
1
x
.
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11.3.10. (a)

û(x) = 1− x2 + 1
2 x

4 − 1
6 x

6 + · · · =
∞∑

k=0

(−1)kx2k

k !
,

ũ(x) = x− 2
3 x

3 + 4
15 x

5 − 8
105 x

7 + · · ·

=
∞∑

k=0

(−1)k2kx2k+1

(2k + 1)(2k − 1)(2k − 3) · · · 5 · 3 =
∞∑

k=0

(−1)k22kk !x2k+1

(2k + 1)!
.

(b) Since the equation has no singular points, both series have an infinite radius of

convergence. (c) û(x) = e−x2

; (d) ũ(x) = e−x2
∫ x

0
ey

2

dy.

11.3.15. (a) u(x) = c1û(c − x) + c2ũ(c − x), where û, ũ are given in (11.81, 82), and c1, c2 are
arbitrary constants.

11.3.22. (a) Multiplying by x, the equation 2x2 u′′ + xu′ + x2u = 0 has the form (11.88) at x0 = 0

with a(x) = 2, b(x) = 1, c(x) = x2, all analytic at x = 0 with a(0) 6= 0.

(b) The indicial equation is 2r2 − r = 0 with roots r = 0, 12 . The recurrence formula is

un = −
un−2

(n+ r)[2(n+ r)− 1]
, n ≥ 2.

The resulting two solutions are

û(x) = 1− x2

2 · 3 +
x4

(2 · 4) · (3 · 7) − x6

(2 · 4 · 6) · (3 · 7 · 11)

+ · · · +
(−1)kx2k(

2 · 4 · · · (2k)
)
·
(
3 · 7 · · · (4k − 1)

) + · · · ,

ũ(x) = x1/2 − x5/2

2 · 5 +
x9/2

(2 · 4) · (5 · 9) − x13/2

(2 · 4 · 6) · (5 · 9 · 13)

+ · · · +
(−1)kx(4k+1)/2

(
2 · 4 · · · (2k)

)
·
(
5 · 9 · · · (4k + 1)

) + · · · .

11.3.27. (a) J5/2(x) =

√
2
π

(
3x−5/2 sinx− 3x−3/2 cos x− x−1/2 sin x

)
.

♦ 11.3.30. (a) The point x0 = 0 is regular because it is of the form (11.88) with

a(x) = b(x) = 1, c(x) = −x2 +m2.

(b) Replacing x 7→ ix converts (11.114) to the ordinary Bessel equation (11.98) of order
m. Therefore, its Frobenius solution(s) are

û(x) = Jm( ix) = im
∞∑

k=0

xm+2k

22k+m k ! Γ(m+ k + 1)
,

and, if m is not an integer,

ũ(x) = J−m( ix) = i−m
∞∑

k=0

(−1)kx−m+2k

22k−m k ! Γ(−m+ k + 1)
.

If m is an integer, then the second solution is u2(x) = Ym( ix), where Ym is the Bessel
function of the second kind (11.107).
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11.4.1. u(t, r, θ) =
1

π

∞∑

n=1

J0
(
1
2 ζ0,n

)

J1(ζ0,n)
2
e− ζ2

0,nt J0(ζ0,n r) +

+
2

π

∞∑

m,n=1

Jm
(
1
2 ζm,n

)

Jm+1(ζm,n)
2
e− ζ2

m,nt Jm(ζm,n r) cosmθ.

♦ 11.4.7. Suppose u(t, x, y) solves the heat equation ut = γ∆u on a disk of radius 1, subject to
initial conditions u(0, x, y) = f(x, y) and, say, homogeneous boundary conditions. Then
U(t, x, y) = u(t/R2, x/R, y/R) solves the heat equation Ut = γ∆U on a disk of radius
R, subject to initial conditions U(0, x, y) = F (x, y) where f(x, y) = F (x/R, y/R), along
with the same type of homogeneous boundary conditions.

11.4.9. 12 minutes.

♥ 11.4.15. (a) The eigensolutions are

um,n(t, r, θ) = e− ζ2
m,nt Jm(ζm,n r) sinmθ,

n = 1, 2, 3, . . . ,

m = 1, 2, . . . .

The general solution is a series in the eigensolutions:

u(t, r, θ) =
∞∑

m,n=1

bm,n um,n(t, r, θ),

whose coefficients bm,n are prescribed by the initial data.

(b) The eigensolutions are

u0,n(t, r) = e− ζ2
0,nt J0(ζ0,n r),

um,n(t, r, θ) = e− ζ2
m,nt Jm(ζm,n r) cosmθ,

n = 1, 2, 3, . . . ,

m = 1, 2, . . . .

where ηm,n are roots of the derivative of the mth order Bessel function: J ′
m(ηm,n) = 0.

The general solution is a series in the eigensolutions:

u(t, r, θ) =
1

2

∞∑

n=1

a0,n u0,n(t, r) +
∞∑

m,n=1

am,n um,n(t, r, θ),

whose coefficients bm,n are prescribed by the initial data.

(c) The Dirichlet problem decays to equilibrium over 2.5 times faster than the mixed bound-
ary value problem. For the Dirichlet problem, the decay rate is ζ21,1 ≈ 14.682, whereas

for the mixed problem, the rate is ζ20,1 ≈ 5.783. Intuitively, the greater the portion of the

boundary that is held fixed at 0◦, the faster the return to equilibrium.

11.4.19. In view of the formula (11.105) for J1/2(x), the roots are ζ1/2,n = nπ for k = 1, 2, 3, . . . .

In this case they exactly satisfy (11.119).

11.5.1. u(t, x, y) =
1

20 t + 1
e−(x2+y2)/(20 t+1).

♦ 11.5.6. u(t, x, y) =
∫ t

0

(∫∫ h(τ, ξ, η)

4πγ (t− τ)
e− [ (x−ξ)2+(y−η)2 ]/[4γ (t−τ)] dξ dη

)
dτ.
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11.5.11. (a) Since v(t, x) solves vt = − vxxx, while w(t, y) solves wt = −wyyy, we have

ut = vtw + v wt = − vxxxw − v wyyy = −uxxx − uyyy.

(b) F (t, x, y; ξ, η) =
1

(3 t)2/3
Ai

(
x− ξ
3
√
3 t

)
Ai

(
y − η
3
√
3 t

)
.

(c) u(t, x, y) =
1

(3 t)2/3

∫∫
f(ξ, η)Ai

(
x− ξ
3
√
3 t

)
Ai

(
y − η
3
√
3 t

)
dξ dη.

11.6.3. ω1,1 =
√
2π ≈ 4.4429; two independent normal modes;

ω1,2 = ω2,1 =
√
5 π ≈ 7.0248; four independent normal modes;

ω2,2 = 2
√
2 π ≈ 8.8858; two independent normal modes;

ω1,3 = ω3,1 =
√
10 π ≈ 9.9346; four independent normal modes;

ω2,3 = ω3,2 =
√
13 π ≈ 11.3272; four independent normal modes;

ω1,4 = ω4,1 =
√
17 π ≈ 12.9531; four independent normal modes.

11.6.5. (a)

u(t, x, y) =
2

π

∞∑

k=0

cos

√
1 +

(
k + 1

2

)2
πt sin

(
k + 1

2

)
πx sinπy

k + 1
2

+

+
2

π2

∞∑

k=0

4 sin

√
1 +

(
k + 1

2

)2
πt sin

(
k + 1

2

)
πx sinπy

(
k + 1

2

)√
1 +

(
k + 1

2

)2 ;

(b) u(t, x, y) = cosπt sin πy +
1

π
sinπt sin πy.

11.6.9. For example, u(t, x, y) = c1 cos
√
2π c t sin πx sin πy + c2 cos 2

√
2 π c t sin 2πx sin 2πy,

for any c1, c2 6= 0 is periodic of period 1/
√
2, but a linear combination of two fundamen-

tal modes. Its frequency, 2
√
2π, is (necessarily) a fundamental frequency.

11.6.14. u(t, x, y) =
2
c
sin(ct) J0

(√
x2 + y2

)
. The vibrations are radially symmetric and periodic

with period 2π/c. For fixed t, the solution is either identically 0 or of one sign through-
out the interior of the disk. Thus, at any given time, the drum is either entirely above
the (x, y)–plane, entirely below it, or, momentarily, completely flat.

11.6.18. (a) The displacement u(t, r, θ) must satisfy utt = c2∆u, along with the boundary and
initial conditions

u(t, r, 0) = 0, u(t, 1, θ) = 0, uθ
(
t, r, 12 π

)
= 0,

u(t, r, θ) = 0, ut(0, r, θ) = 2 δ
(
r − 1

2

)
δ
(
θ − 1

4 π
)
,

r < 1,

0 < θ < 1
2 π.

Note that the factor of 2 in the initial condition for ut comes from the formula

δ(x− x0, y − y0) =
δ(r − r0) δ(θ − θ0)

r
=
δ(r − r0) δ(θ − θ0)

r0
for r0 6= 0,

relating the rectangular and polar coordinate forms of the delta function.

(b) The odd-order Bessel roots ζ2k+1,n for k = 0, 1, 2, . . . , n = 1, 2, 3, . . . .
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(c) u(t, r, θ) =

∞∑

k=0

∞∑

n=1

8J2k+1

(
1
2 ζ2k+1,n

)
sin
(
1
2 k +

1
4

)
π

π ζ2k+1,n J2k+2(ζ2k+1,n)
2

sin(ζ2k+1,n t)J2k+1(ζ2k+1,n r) sin(2k + 1)θ.

(d) The motion of the quarter disk is stable and quasiperiodic.

11.6.25. If the side lengths are a ≤ b, then the two lowest vibrational frequencies are

ω1 = π

√
1

a2
+

1

b2
< ω2 = π

√
1

a2
+

4

b2
.

Thus, we can recover the side lengths through the formulae

a = π

√√√√ 3

4ω2
1 − ω2

2

, b = π

√√√√ 3

ω2
2 − ω2

1

.

11.6.29. Since the half disk’s vibrational frequencies are a subset of the full disk frequencies,
corresponding to the eigenfunctions v(x, y) that are odd in y — i.e., those, as in
(11.156), that involve sinmθ — the ratios of two half disk frequencies is a ratio of the
corresponding full disk frequencies. However, the lowest frequency of the half disk is
not the lowest frequency of the full disk, and so the relative frequencies are different.

11.6.34. Set ξ = ax+by. Then, by the chain rule, utt = vtt, and uxx+uyy = (a2+b2)vξξ , and hence

v(t, ξ) satisfies the wave equation vtt = c2vξξ with wave speed c = 1/
√
a2 + b2 . The

solutions are plane waves that have the same value along each line ax + by =constant,
and move with speed c in the transverse direction.

11.6.40. The nodal circle in the fourth mode, with frequency ω0,2 = 2.29542, has radius
ζ0,1/ζ0,2 ≈ .43565; in the sixth mode, with frequency ω1,2 = 2.9173, the radius is
ζ1,1/ζ1,2 ≈ .54617; in the eighth mode, with frequency ω2,2 = 3.50015, the radius is
ζ2,1/ζ2,2 ≈ .61013; in the ninth mode, with frequency ω0,3 = 3.59848, the two radii are
ζ0,1/ζ0,3 ≈ .27789 and ζ0,2/ζ0,3 ≈ .63788. Thus,

ζ0,1/ζ0,3 < ζ0,1/ζ0,2 < ζ1,1/ζ1,2 < ζ2,1/ζ2,2 < ζ0,2/ζ0,3.

11.6.41. (b)

radii: .3471, .5689, .7853;
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Student Solutions to

Chapter 12: Partial Differential Equations in Space

12.1.1. For example: (a) 1, x, y, z, x2 − y2, y2 − z2, xy, xz, y z.

♦ 12.1.4. By the chain rule, Uxx = uxx, Uyy = uyy, Uzz = uzz , and hence ∆U = ∆u = 0.

♦ 12.1.10. (a) ∇ · (uv) = ∂

∂x
(uv1) +

∂

∂y
(uv2) +

∂

∂z
(uv3)

=
(
ux v1 + uy v2 + uz v3

)
+ u(v1,x + v2,y + v3,z) = ∇u · v + u∇ · v;

♦ 12.1.11. First, setting v = ∇v in (12.10) produces
∫∫∫

Ω
u∆v dx dy dz =

∫∫

∂Ω
u
∂v

∂n
dS −

∫∫∫

Ω
∇u · ∇v dx dy dz.

Taking v = 1 in the latter identity yields (a), while setting v = u gives (b).

12.2.2. The equilibrium temperature is constant: u ≡ 10◦.

12.2.4. (b) u(x, y, z) = 2
3 + 1

3 x
2 + 1

3 y
2 − 2

3 z
2.

12.2.5. (i) 1
2 π =

1

4π

∫ π

−π

∫ π

0
ϕ sinϕ dϕdθ; (ii) 1

2 π − 3
8 π z +

21
256 π(x

2 + y2) z − 7
128 π z

3.

♦ 12.2.10. (a) At t = 1 we write (12.28) as

(t− 1)2(t+ 1)
d2P

dt2
+ (t− 1)(2 t)

dP

dt
− µ (t− 1)P = 0,

which is of the form (11.88) with

p(t) = (t+ 1), q(t) = 2 t, r(t) = −µ (t− 1),

all analytic at t = 1 with p(1) = 2 6= 0. A similar argument applies at t = −1.

(b) Set
K[u(t) ] = (1− t2)u′′(t)− 2 t u′(t) + µu(t) = d/dt

[
(1− t2)u′(t)

]
+ µu(t).

Then, integrating by parts twice,

〈K[u ] ; v 〉 =
∫ 1

−1

[
d

dt

[
(1− t2)u′(t)

]
+ µu(t)

]
v(t) dt

= (1− t2)u′(t) v(t)
∣∣∣∣
1

t=−1
+
∫ 1

−1

[
−(1− t2)u′(t)v′(t) + µu(t) v(t)

]
dt

= (1− t2)
[
u′(t) v(t)− u(t) v′(t)

] ∣∣∣∣
1

t=−1
+
∫ 1

−1
u(t)

[
d

dt
(1− t2) v′(t) + µ v(t)

]
dt

= 〈u ;K[v ] 〉,
where the boundary terms vanish at ±1 provided u(±1), u′(±1), v(±1), v′(±1) are all
finite.

(c) The Legendre polynomials Pk(t) are the eigenfunctions of the self-adjoint operator

K0[u(t) ] = (1− t2) u′′(t)− 2 t u′(t)
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corresponding to the eigenvalues λk = k (k + 1). This implies that they are orthogonal

with respect to the L2 inner product on [−1, 1] , i.e.,

〈Pk ;Pl 〉 =
∫ 1

−1
Pk(t)Pl(t) dt = 0 for k 6= l.

♦ 12.2.15. Using (12.31)
√
1− t2

dPm
n

dt
+

mt√
1− t2

Pm
n (t) = (1− t2)(m+1)/2 dm+1

dtm+1
Pn(t)

−mt (1− t2)(m−1)/2 dm

dtm
Pn(t) +mt (1− t2)(m−1)/2 dm

dtm
Pn(t) = Pm+1

n (t).

12.2.19. Since Y 0
0 (ϕ, θ) = 1, the first surface is the unit sphere r = 1. The surface r = Y 0

1 (ϕ, θ) =

cosϕ can be rewritten as r2 = r cosϕ = z, or, equivalently, x2 + y2 +
(
z − 1

2

)2
= 1

4 ,

which is the sphere of radius 1
2 centered at the point

(
0, 0, 12

)
.

♦ 12.2.23. According to (12.46),

〈 Ym
n ;Yk

l 〉 = 〈Ym
n + i Ỹm

n ;Y k
l + i Ỹ k

l 〉
= 〈Ym

n ;Y k
l 〉+ i 〈 Ỹm

n ;Y k
l 〉 − i 〈Ym

n ; Ỹ k
l 〉+ 〈 Ỹm

n ; Ỹ k
l 〉 = 〈Ym

n ;Y k
l 〉+ 〈 Ỹm

n ; Ỹ k
l 〉,

by the orthogonality of the real spherical harmonics — which continues to apply when
m and/or k is negative in view of our conventions that Ym

n = Y −m
n , Ỹm

n = − Ỹ −m
n ,

Ỹ 0
n ≡ 0. Thus, if (m,n) 6= (k, l) both of the final summands are zero, proving orthogo-

nality. On the other hand, we find

‖Ym
n ‖2 = ‖Ym

n ‖2 + ‖ Ỹm
n ‖2 =

4π(n+m) !

(2n+ 1)(n−m) !
,

since, when m 6= 0 the two norms are equal by the second formula in (12.42), whereas
when m = 0, the second norm is zero by our convention, and the first formula in (12.42)
applies.

12.2.26. (a) (i) 9
64 r

4+ 5
16 r

4 cos 2ϕ+ 35
64 r

4 cos 4ϕ; (ii) 3
8 x

4+ 3
4 x

2y2+ 3
8 y

4−3x2z2−3y2z2+ z4.

12.2.29. (a) K0
0 (x, y, z) =

1
√
x2 + y2 + z2

.

12.2.33. (a) 〈 f ; g 〉 =
∫ 1

0

∫ π

−π

∫ π

0
f(r, θ, ϕ) g(r, θ, ϕ) r2 sinϕ dϕ dθ dr,

‖ f ‖ =

√∫ 1

0

∫ π

−π

∫ π

0
f(r, θ, ϕ)2 r2 sinϕ dϕ dθ dr .

(b) Since f(r, ϕ, θ) = r cosϕ, g(r, ϕ, θ) = r2 sin2 ϕ,

‖ f ‖ =

√
4
15 π ≈ .9153, ‖ g ‖ =

√
32
105 π ≈ .9785, 〈 f ; g 〉 = 0.

(c) | 〈 f ; g 〉 | = 0 ≤ .8956 = ‖ f ‖‖ g ‖, ‖ f + g ‖ =

√
4
7 π ≈ 1.3398 ≤ 1.8938 = ‖ f ‖+‖ g ‖.

12.2.35. u(x, y, z) = 100z.

12.3.1. (a) u(x, y, z) =
1

4π
√
x2 + y2 + z2

− 1

4π
.
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12.3.6. In terms of r = ‖x ‖, the potential is u(r) =





ρ2

2
− ρ3

3
− r2

6
, r ≤ ρ,

ρ3

3

(
1

r
− 1

)
, ρ ≤ r ≤ 1.

12.3.9. K0
0 (x, y, z) =

1
r
=

1
√
x2 + y2 + z2

is the Newtonian potential, while K̃0
0 (x, y, z) = 0.

♦ 12.4.1. (a) ut = γ∆u, u(0, x, y, z) = f(x, y, z), u(t, 0, y, z) = u(t, a, y, z) = u(t, x, 0, z) =
u(t, x, b, z) = u(t, x, y, 0) = u(t, x, y, c) = 0, for (x, y, z) ∈ B and t > 0.

(b) For j, k, l = 1, 2, . . . .

uj,k,l(t, x, y, z) = exp


−


 j2

a2
+
k2

b2
+
l2

c2


π2 γ t


 sin

j πx
a

sin
kπy
b

sin
l πz
c

.

(c) u(t, x, y, z) =
∞∑

j,k,l=1

cj,k,l uj,k,l(t, x, y, z), where

cj,k,l =
8

abc

∫ c

0

∫ b

0

∫ a

0
f(x, y) sin

j πx
a

sin
kπy
b

sin
l πz
c
dx dy dz.

(d) The equilibrium temperature is u⋆ ≡ 0. The exponential decay rate for most initial

data is given by the smallest positive eigenvalue, namely λ1,1,1 = γ π2
(

1

a2
+

1

b2
+

1

c2

)
.

♦ 12.4.5. (a)
∂u

∂t
= γ


 ∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
+
∂2u

∂z2


 , u(t, a, θ, z) = u(t, r, θ, 0) = u(t, r, θ, b) = 0,

u(t, r,−π, z) = u(t, r, π, z),
∂u

∂θ
(t, r,−π, z) = ∂u

∂θ
(t, r, π, z), u(0, r, θ, z) = f(r, θ, z),

for 0 < r < a, −π < θ < π, 0 < z < h.

(b) The separable solutions are

um,n,k(t, r, θ, z) = e−λm,n,kt Jm

(
ζm,n r

a

)
cosmθ sin

kπz

h
,

ûm,n,k(r, θ, z) = e−λm,n,kt Jm

(
ζm,n r

a

)
sinmθ sin

kπz

h
,

m = 0, 1, 2, . . . ,

n, k = 1, 2, 3, . . . ,

where the eigenvalues are

λm,n,k = γ



ζ2m,n

a2
+
k2π2

h2


 .

The solution can be written as a Fourier–Bessel series

u(t, r, θ, z) =
1

2

∞∑

n,k=1

a0,n,k u0,n,k(t, r, z)

+
∞∑

m,n,k=1

[
am,n,k um,n,k(t, r, θ, z) + bm,n,k ûm,n,k(t, r, θ, z)

]
,

where

am,n,k =
4

πa2h Jm+1(ζm,n)
2

∫ h

0

∫ π

−π

∫ a

0
f(r, θ, z) Jm

(
ζm,n r

a

)
r cosmθ sin

kπz

h
dr dθ dz,

bm,n,k =
4

πa2h Jm+1(ζm,n)
2

∫ h

0

∫ π

−π

∫ a

0
f(r, θ, z) Jm

(
ζm,n r

a

)
r sinmθ sin

kπz

h
dr dθ dz.
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(c) The equilibrium temperature is u⋆(r, θ, z) = 0.

(d) The (exponential) decay rate is governed by the smallest eigenvalue, namely

λ0,1,1 = γ



ζ20,1
a2

+
π2

h2


 .

12.4.14. 15× (300/200)2/3 = 19.66 minutes.

♦ 12.4.16. The decay rate is the smallest positive eigenvalue of the Helmholtz boundary value prob-
lem γ∆v + λv = 0 on the ball of radius R with v = 0 on its boundary. The rescaled
function V (x) = v(x/R) solves the rescaled boundary value problem ∆V + ΛV = 0 on

the unit ball, V = 0 on its boundary, with Λ = R2λ/γ = π2 the smallest eigenvalue.
Thus, the decay rate is λ = π2 γ/R2.

12.4.20. We can assume, by rescaling, that the common volume is 1, and that the thermal diffu-
sivity is γ = 1. Note that we are dealing with homogeneous Dirichlet boundary condi-
tions. For the cube, the smallest eigenvalue is 3π2 ≈ 29.6088. For the sphere of radius

R = 3

√
3

4π
, of unit volume, the smallest eigenvalue is

π2

R2
=

24/3π8/3

32/3
≈ 25.6463,

cf. Exercise 12.4.16. Thus, the cube cools down faster.

12.4.25. By l’Hôpital’s rule: (a) S1(0) = lim
x→ 0

S1(x) = lim
x→ 0

sinx− x cos x

x2
= lim

x→ 0

x sinx

2x
= 0.

12.4.31. (a)

u(t, x, y, z) =
1

8 (π t)3/2

∫∫∫

ξ2+η2+ζ2≤1
100 e−[ (x−ξ)2+(y−η)2+(z−ζ)2 ]/(4 t) dξ dη dζ

=
12.5

(π t)3/2

∫ π

−π

∫ π

0

∫ 1

0
e−[ (x−r sinϕ cos θ)2+(y−r sinϕ sin θ)2+(z−r cosϕ)2 ]/(4 t) r2 sinϕ dr dϕ dθ.

(b) Since the temperature only depends on the radial coordinate r, we set x = 0, y =
0, z = ρ, to simplify the integral:
12.5

(π t)3/2

∫ 1

0

∫ π

0

∫ π

−π
e−(r2−2r ρ cosϕ+ρ2)/(4 t) r2 sinϕ dθ dϕdr

=
50√
π t ρ

∫ 1

0
r
[
e− (r−ρ)2/(4 t) − e− (r+ρ)2/(4 t)

]
dr

= 50 erf

(
ρ+ 1

2
√
t

)
− 50 erf

(
ρ− 1

2
√
t

)
+

100

ρ

√
t

π

[
e− (ρ+1)2/(4 t) − e− (ρ−1)2/(4 t)

]
,

which gives the solution value u(t, x, y, z) when ρ =
√
x2 + y2 + z2 .

12.4.36. As in (9.128),

F (t, x, y, z; ξ, η, ζ) = 8
∞∑

j,k,l=1

e− (j2+k2+l2) t sin j πx sin kπy sin l πz sin j πξ sin kπη sin lζ.
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12.5.1. (a) u(t, x, y, z) =

64

π3

∞∑

i,j,k=0

cosπ
√
(2i+ 1)2 + (2j + 1)2 + (2k + 1)2 t sin(2i+ 1)πx sin(2j + 1)πy sin(2k + 1)πz

(2i+ 1)(2j + 1)(2k + 1)
;

(d) u(t, x, y, z) = cos 3π t sin 3πx+
sin 2πt sin 2πy

2π
.

12.5.3. (a) Assuming the cube is given by {0 ≤ x, y, z ≤ 1}, the separable eigenmodes are

cos c
√
l2 +m2 + n2 π t sin l πx sinmπy sinnπz,

sin c
√
l2 +m2 + n2 π t sin l πx sinmπy sinnπz,

for l,m, n positive integers.

(b) Whenever l2 + m2 + n2 = l̂2 + m̂2 + n̂2, one can take a linear combination of the

separable modes that is periodic with frequency ω = c
√
l2 +m2 + n2 π. For example,

u(t, x, y, z) = cos
√
6 cπ t (sinπx sin πy sin 2πz + sinπx sin 2πy sinπz).

12.5.6. (b) The eigenfunctions for the Laplacian operator on the cylinder are

um,n,k(t, r, θ, z) = Jm(ζm,n r) cosmθ cos 1
2 kπz,

ûm,n,k(r, θ, z) = Jm(ζm,n r) sinmθ cos 1
2 kπz,

m, k = 0, 1, 2, . . . ,

n = 1, 2, 3, . . . ,

with associated eigenvalues and vibrational frequencies

λm,n,k = ζ2m,n + 1
4 k

2π2, ωm,n,k =
√
λm,n,k =

√
ζ2m,n + 1

4 k
2π2 .

12.5.10. For the sphere, the slowest vibrational frequency is c π/R ≈ 3.1416 c/R, whereas for the
disk it is c ζ0,1/R ≈ 2.4048 c/R. Thus, the sphere vibrates faster.

12.6.1. (a) u(t, x, y, z) = x+ z.

12.6.3. (a) The solution, for t > 0, is

u(t,x) =
1

4πt

∫∫

‖ ξ−x ‖=t

∂u

∂t
(0,x) dS =

1

4πt
area

[
S x

t ∩ C
]
,

which is 1/(4πt) times the surface area of the intersection of the sphere of radius t cen-
tered at x with the unit cube C = {0 ≤ x, y, z ≤ 1}.

(b)
√
2 < t < 3 since the closest point to (2, 2, 1) in C, namely (1, 1, 1), is at a distance of

√
2, while the furthest, namely (0, 0, 0), is at a distance of 3. The light signal starts out

quiescent. Beginning at time t =
√
2, it gradually increases to a maximum value, which

is closer to
√
2 than to 3, and then decreases, eventually dying out at t = 3.
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1 2 3 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) This is true for t > 0, but false for t < 0, since u(− t, x, y, z) = −u(t, x, y, z) when
u(0, x, y, z) ≡ 0.

12.6.10. (a) u(t, x, y) =
1

2π

∂

∂t

∫∫

‖ ξ−x ‖≤t

ξ3 − η3
√
t2 − (ξ − x)2 − (η − y)2

dξ dη.

♦ 12.6.13. (a) u(t, x) = 1
2 δ(x− c t) + 1

2 δ(x+ c t); (b) u(t, x) =

{
1/(2c), |x | < c t,

0, |x | > c t.
;

(c) Huygens’ Principle is not valid in general for the one-dimensional wave equation, since,
according to part (b), a concentrated initial velocity does not remain concentrated along
the characteristics, but spreads out over all of space. Only concentrated initial displace-
ments remain concentrated on characteristics.

12.7.1. The atomic energy levels are multiplied by Z2, so that formula (12.189) for the

eigenvalues becomes λn = − Z2α4M

2 ~2
1

n2
= − Z2α2

2a

1

n2
, n = 1, 2, 3, . . . .

♦ 12.7.3.

L
j
k(s) =

s−jes

k !

dk

dsk

[
sj+ke−s

]
=
s−jes

k !

k∑

i=0


k
i


 dk−i

dsk−i
sj+k di

dsi
e−s

=
s−jes

k !

k∑

i=0

k !

i ! (k − i) !

(j + k) !

(j + i) !
sj+i(−1)ie−s =

k∑

i=0

(−1)i

i !


j + k

j + i


 si.
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