The Dirichlet condition is a type of boundary condition commonly used in the study of partial differential equations (PDEs) \circ It specifies the values that a solution must take on the boundary of the domain \circ

For a PDE defined on a domain Ω with boundary $\partial \Omega$, the Dirichlet boundary condition is given by :

$$u(x)=f(x)$$
 for $x \in \partial \Omega$

Examples

1. One-dimensional heat equation

$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$$
 , 00 with

Boundary condition $u(0,t) = T_1, u(0,L) = T_2$ for all t >0

Initial condition u(x,0) = f(x) for $0 \le x \le L$

- (1) Steady-state solution $u_s(x)$
- (2) Transient solution (a time-dependent part)

. . .

$$u(x,t) = T_1 + \left(rac{T_2 - T_1}{L}
ight) x + \sum_{n=1}^{\infty} B_n \sin\left(rac{n\pi x}{L}
ight) e^{-lpha(n\pi/L)^2 t}$$

2. Temperature distribution in a square plate

The steady-atate temperature u(x,y) in a square plate $\Omega = [0,\pi] \times [0,\pi]$ with the boundary condition:

$$u(0, y) = u(\pi, y) = u(x, 0) = 0, u(0, \pi) = g(x)$$

...

$$u(x, y) = \frac{\sin(2x)\sinh(2y)}{\sinh(2\pi)}$$

Condition	Mathematical Form	Physical Meaning
Dirichlet	$u=f$ on $\partial\Omega$	Fixed temperature/potential at boundary.
Neumann	$rac{\partial u}{\partial n}=g$	Prescribed heat flux/flow.
Robin (Mixed)	$au+brac{\partial u}{\partial n}=h$	Convective cooling/heating.

3. Laplae equation in a circular domain (Polar coordinates)

$$\Delta u = \frac{1}{r} \frac{\partial}{\partial r} (r \frac{\partial u}{\partial r}) + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0 \quad \text{for} \quad 0 \le r < R \quad \text{with the Dirichlet condition}$$

$$u(R, \theta) = f(\theta)$$

In the case
$$f(\theta) = \sin 3\theta$$
, $u(r,\theta) = (\frac{r}{R})^3 \sin(3\theta)$

Comparison with Cartesian Coordinates:

Aspect	Cartesian (Rectangle)	Polar (Circle)
Domain	$[0,L_x]\times [0,L_y]$	$0 \leq r \leq R, heta \in [0, 2\pi)$
Boundary	Edges $x=0, x=L_x$, etc.	$\operatorname{Circle} r = R$
Solution Form	$\sum \sin(rac{m\pi x}{L_x})\sin(rac{n\pi y}{L_y})$	$\sum r^n(a_n\cos(n heta)+b_n\sin(n heta))$
Singularities	None	Must exclude r^{-n} at $r=0$

4. Laplace equation in a 3D sphere (spherical coordinates) a special case

$$abla^2 u = rac{1}{r^2}rac{\partial}{\partial r}\left(r^2rac{\partial u}{\partial r}
ight) + rac{1}{r^2\sin heta}rac{\partial}{\partial heta}\left(\sin hetarac{\partial u}{\partial heta}
ight) + rac{1}{r^2\sin^2 heta}rac{\partial^2 u}{\partial \phi^2} = 0,$$

A special case if $f(\theta, \phi) = f(\theta) = \cos \theta$ then

...

$$u(r,\theta) = \frac{r}{R}\cos\theta$$