The KdV equation -
§ 01 awave solution
u,+6uu, +u, =0..(1) > —o<X<o,0<t<oo with initial condition u(x,0)= f(X)

Is used to describe the evolution of shallow water wave ©

A traveling wave solution which has permanent form occurs to a balance of its dispersive
(fH5Dterm U, > and its nonlinear term 6uu, ©
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§ 02 the time-independent Schr 0 dinger equation
Miura transform U =V*+v,...(3) » FLA(DE
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Miura transformation E{E& v Y Riccatti equation
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w, +(A-u)y =0 Schrodinger equation

Where u(x,t) plays the role of a potential and A is an eigenvalue of y(X,t)
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If one is given a linear pde with some initial condition, then the solution of the linear pde can be determine
using the following steps:

e take the Fourier transform of the linear pde which results in a linear ordinary differential equation
(ode) in the Fourier space

o take the Fourier transform of the initial condition (usually not too difficult)
® solve the resulting ode with its initial condition in Fourier space

o transform back to physical space and obtain the solution in the original variables.

Example
U, =u,,u(x,0)= f(x),—o<x<ow

Where u=u(x,t) and f(x) has a Fourier transform °

Define Fourier transform  F (k) = .[i f (x)e ™™ dx
. _ 1 .
and inverse Fourier transform  f (X) = 5 J F(k)e™dk
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I u.e "dx = I — (ue™)dx =— J ue ™dx =-— > where U is the Fourier transform
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J: u,e “dx=--=—k’U (EHFER X integrate by parts with respect to x)

Jﬁﬁ%&%:—kzu,U(k,O) _ F(K),—0 <k <0

U (k,t) =U (k,0)e "


DE5003Riccati.pdf
documents/Martin_David_Kruskal.pdf

HY inverse Fourier transform--+
§ Lax Method in Hilbert space

§ Galilean invariant

Galilean transformation -

A uniform motion (X,t) > (X+tv,t)

A translation (X,t) > (x+a,t+59)

A rotation (x,t) = (Rx,t)

The transformation which describes Galilean invariance is given by -
X=X'+6At' t=t'u=u'-4,—0o<A<owo (¥

Ur+6UUx+Uxxx =0

The KdV equation 1s invariant under the transformation given by (*) ©

§ The conservation law

. . 0T oX
Consider the equation 54_&:0 where T =T(Xxt,u,u,,u,,...) and

X =X(Xtuu,u,,..) If X—>0 as [x—>oo

Then %(Jdex) =0 > implies that JZTdX =constant °

u, +6uu, +u,, =0

ou o0 ©
at + x (3u®+u,) =0 then J-_w u(X,t)dx =constant > where we have taken

u,u,,u, >0 as |x|—>o



