- 1. The function f is given by f(x) = $3x^4 - 2x^3 + 7x - 2$. On which of the following intervals is f' decreasing?
 - (A) (-∞,∞)
 - (B) (-∞,0)
 - (C) $\left(\frac{1}{3},\infty\right)$
 - (D) $\left(0,\frac{1}{3}\right)$
 - (E) $\left(-\frac{1}{3},0\right)$
- 2. What is the area under the curve described by the parametric equations $x = \sin t$ and y = $\cos^2 t$ for $0 \le t \le \frac{\pi}{2}$?

 - (A) $\frac{1}{3}$ (B) $\frac{1}{2}$ (C) $\frac{2}{3}$
 - (D) 1
 - (E) $\frac{4}{3}$
- **3.** The function f is given by $f(x) = 8x^3$ $+36x^{2} + 54x + 27$. All of these statements are true EXCEPT
 - (A) $-\frac{3}{2}$ is a zero of f.
 - (B) $-\frac{3}{2}$ is a point of inflection of f.
 - (C) $-\frac{3}{2}$ is a local extremum of f.
 - (D) $-\frac{3}{2}$ is a zero of the derivative
 - (E) f is strictly monotonic.

4.
$$\int x \ln x \, dx =$$

(A)
$$\frac{x^2 \ln x}{2} + \frac{x^2}{4} + C$$

(B)
$$\frac{x^2}{4}(2\ln x - 1) + C$$

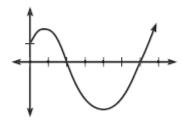
(C)
$$\frac{x}{2}(x \ln x - 2 + C)$$

(D)
$$x \ln x - \frac{x^2}{4} + C$$

(E)
$$\frac{(\ln x)}{x} - \frac{x^2}{4} + C$$

- 5. Let $h(x) = \ln |g(x)|$. If g is decreasing for all x in its domain, then
 - (A) h is strictly increasing.
 - (B) h is strictly decreasing.
 - (C) h has no relative extrema.
 - (D) both (B) and (C).
 - (E) none of the above.

QUESTIONS 6, 7, AND 8 REFER TO THE DIAGRAM AND INFORMATION BELOW.



The function f is defined on [0,7]. The graph of its derivative, f', is shown above.

The function f is defined on [0,7]. The graph of its derivative f' is shown above.

6. The point (2,5) is on the graph of *y* = *f* (*x*). An equation of the line tangent to the graph of *f* at (2,5) is

$$(A)y=2 (B)y=5 (C)y=0 (D)y=2x+5 (E)y=2x-5$$

APCalculusTest01

7.How many points of inflection does the graph y=f(x) have over [0,7]? (A)0 (B)1 (C)2 (D)3 (E)4

8. At what value of *x* does the absolute maximum value of *f* occur?

(A)1 (B)2 (C)4 (D)6 (E)7

- $9. \quad \int_1^e \left(\frac{x^2 + 4}{x} \right) dx =$
 - (A) $\frac{e^2 + 9}{2}$
 - (B) $\frac{e^2 9}{2}$
 - (C) $\frac{e^2+7}{2}$
 - (D) $\frac{e^2 + 8}{2}$
 - (E) $\frac{e^2-4}{2}$
- **10.** The function f given by $f(x) = 3x^5 4x^3 3x$ is increasing and concave up over which of these intervals?
 - (A) $\left(-\infty, -\sqrt{\frac{2}{5}}\right)$
 - **(B)** $\left(-\sqrt{\frac{2}{5}},0\right)$
 - (C) (-1, 1)
 - **(D)** $\left(\sqrt{\frac{2}{5}}, \infty\right)$
 - (E) (1, ∞)

- 11. If y=2xy-x²+3, then when x=1, $\frac{dy}{dx}$ =
 - (A)-6 (B)-2 (C) $-\frac{2}{3}$ (D)2 (E)6
- **12.** The length of the curve described by the parametric equations $x = 2t^3$ and $y = t^3$ where $0 \le t \le 1$ is
 - (A) $\frac{5}{7}$
 - (B) $\frac{\sqrt{5}}{2}$
 - (C) $\frac{3}{2}$
 - (D) $\sqrt{5}$
 - **(E)** 3
- 13. What is the average value of $f(x) = 3\sin^2 x \cos^2 x$ over $\left[0, \frac{\pi}{2}\right]$?
- (A)0 (B)1 (C) $\sqrt{2}$ (D) $\sqrt{3}$ (E) $\frac{\pi}{2}$
- 14. Let f be defined as

$$f(x) = \begin{cases} \sqrt[3]{x} + kx, & x < 1 \\ \ln x, & x \ge 1 \end{cases}$$

for some constant *k*. For what value of *k* will *f* be differentiable over its whole domain?

(A)-2 (B)-1 (C) $\frac{2}{3}$ (D)1 (E)None of the above

- 15. What is the approximation of the value of e^3 obtained by using a fourth-degree Taylor polynomial about x = 0 for e^x ?
 - (A) $1+3+\frac{9}{2}+\frac{9}{2}+\frac{27}{8}$
 - **(B)** $1+3+9+\frac{27}{8}$
 - (C) $1+3+\frac{27}{8}$
 - **(D)** $3 \frac{9}{2} + \frac{9}{2} \frac{27}{4}$
 - (E) $3+9+\frac{27}{8}$
- **16.** $\int 6x^3 e^{3x} dx =$
 - (A) $e^{3x}(9x^3 9x^2 + 6x 2) + C$
 - **(B)** $e^{3x} \left(2x^3 2x^2 \frac{4}{3}x + \frac{4}{9} \right) + C$
 - (C) $\frac{2}{9}e^{3x}\left(2x^3-2x^2+\frac{4}{3}x-\frac{4}{9}\right)+C$
 - **(D)** $\frac{2}{9}e^{3x}(9x^3-9x^2-6x-2)+C$
 - (E) $\frac{2}{9}e^{3x}(9x^3-9x^2+6x-2)+C$
- 17. If $f(x) = \sec x$, then f'(x) has how many zeros over the closed interval $[0,2\pi]$?
- (A)0 (B)1 (C)2 (D)3 (E)4

18. Consider the region in the first quadrant bounded by $y = x^2$ over [0,3]. Let L_3 represent the Riemann approximation of the area of this region using left endpoints and three rectangles, R_3 represent the Riemann approximation using right endpoints and three rectangles, M_3 represent the Riemann approximation using midpoints and three rectangles, and T_3 represent the trapezoidal approximation with three trapezoids. Which of the following statements is true?

(A)
$$R_3 < T_3 < \int_0^3 x^2 dx < M_3 < L_3$$

(B)
$$L_3 < M_3 < T_3 < R_3 < \int_0^3 x^2 dx$$

(C)
$$M_3 < L_3 < \int_0^3 x^2 dx < T_3 < R_3$$

(D)
$$L_3 < M_3 < \int_0^3 x^2 dx < R_3 < T_3$$

(E)
$$L_3 < M_3 < \int_0^3 x^2 dx < T_3 < R_3$$

19. Which of the following series converge?

$$I. \sum_{n=1}^{\infty} \left(\frac{2^n}{n+1} \right)$$

II.
$$\sum_{n=1}^{\infty} \frac{3}{n}$$

III.
$$\sum_{n=1}^{\infty} \left(\frac{\cos 2n\pi}{n^2} \right)$$

- (A) I only
- (B) II only
- (C) III only
- (D) I and II
- (E) I and III

20. The area of the region inside the polar curve $r = 4\sin\theta$ but outside the polar curve $r = 2\sqrt{2}$ is given by

(A)
$$2\int_{\pi/4}^{3\pi/4} (4\sin^2\theta - 1)d\theta$$

(B)
$$\frac{1}{2} \int_{\pi/4}^{3\pi/4} (4 \sin \theta - 2\sqrt{2})^2 d\theta$$

(C)
$$\frac{1}{2} \int_{\pi/4}^{3\pi/4} (4 \sin \theta - 2\sqrt{2}) d\theta$$

(D)
$$\frac{1}{2} \int_{\pi/4}^{3\pi/4} (16 \sin^2 \theta - 8) d\theta$$

(E)
$$\frac{1}{2} \int_{\pi/4}^{3\pi/4} (4 \sin^2 \theta - 1) d\theta$$

21. When x = 16, the rate at which $x^{3/4}$ is increasing is k times the rate at which \sqrt{x} is increasing. What is the value of k?

(A)
$$\frac{1}{8}$$
 (B) $\frac{3}{8}$ (C)2 (D)3 (E)8

22. The length of the path described by the parametric equations $x = 2\cos 2t$ and $y = \sin^2 t$ for $0 \le t \le \pi$ is given by

(A)
$$\int_0^{\pi} \sqrt{4\cos^2 2t + \sin^4 t} \ dt$$

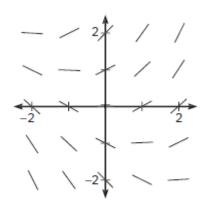
(B)
$$\int_0^\pi \sqrt{2\sin t}\cos t - 4\sin 2t \ dt$$

(C)
$$\int_0^{\pi} \sqrt{4 \sin^2 t \cos^2 t - 16 \sin^2 2t} \ dt$$

(D)
$$\int_0^{\pi} \sqrt{4 \sin^2 2t + 4 \sin^2 t \cos^2 t} \ dt$$

(E)
$$\int_0^{\pi} \sqrt{16 \sin^2 2t + 4 \sin^2 t \cos^2 t} \ dt$$

- 23. Determine the interval of convergence for the series $\sum_{n=0}^{\infty} \left(\frac{(3x-2)^{n+2}}{n^{5/2}} \right).$
 - (A) $-\frac{1}{3} \le x \le \frac{1}{3}$
 - (B) $-\frac{1}{3} < x < 1$
 - (C) $-\frac{1}{3} \le x \le 1$
 - (D) $\frac{1}{3} \le x \le 1$
 - (E) $-\frac{1}{3} \le x \le -1$
- **24.** $f(x) = \frac{(3x+4)(2x-1)}{(2x-3)(2x+1)}$ has a horizontal asymptote at x =
- $(A)\frac{3}{2}$ $(B)\frac{3}{2}$ and $-\frac{1}{2}$ (C)0 $(D)-\frac{3}{4}$ and $\frac{1}{2}$ (E)None of the above
- 25.



Shown above is the slope field for which of the following differential equations?

- (A) $\frac{dy}{dx} = 1 + x$ (B) $\frac{dy}{dx} = x y$ (C) $\frac{dy}{dx} = \frac{x + y}{2}$ (D) $\frac{dy}{dx} = y x$ (E) $\frac{dy}{dx} = y + 1$
 - $26. \quad \int_{2}^{\infty} \frac{x^2}{e^x} dx =$
- (A) $\frac{5}{e}$ (B) $10e^2$ (C) $\frac{10}{e^2}$ (D) 2 (E) 5e

- 27. The population P(t) of a species satisfies the logistic differential equation $\frac{dP}{dt} = \frac{2}{3}P\left(5 \frac{P}{100}\right).$ What is $\lim_{t \to \infty} P(t)$?
- (A)100 (B)200 (C)300 (D)400 (E)500
- 28. If $\sum_{n=0}^{\infty} a_n (x-c)^n$ is a Taylor series

that converges to f(x) for every real x, then f''(c) =

- (A) 0
- **(B)** $n(n-1)a_n$
- (C) $\sum_{n=0}^{\infty} na_n (x-c)^{n-1}$
- (D) $\sum_{n=0}^{\infty} a_n$
- (E) $\sum_{n=0}^{\infty} n(n-1)a_n(x-c)^{n-2}$
- **29.** The graph of the function represented by the Taylor series, centered at x = 1, $1 (x 1) + (x 1)^2 (x 1)^3 + \ldots = (-1)^n (x 1)^n$ intersects the graph of $y = e^x$ at x =
- (A)-9.425 (B)0.567 (C)0.703 (D)0.773 (E)1.763
 - **30.** If f is a vector-valued function defined by $f(t) = (\cos^2 t, \ln t)$, then $f''(t) = (\cos^2 t)$
 - (A) $\left\langle -2\cos t\sin t, \frac{1}{t}\right\rangle$
 - (B) $\left\langle 2\cos t, \frac{1}{t} \right\rangle$
 - (C) $\left\langle 2\cos t \sin t, \frac{1}{t} \right\rangle$
 - **(D)** $\left\langle -2\cos^2 t + 2\sin^2 t, -\frac{1}{t^2} \right\rangle$
 - (E) $\left\langle -2, -\frac{1}{t^2} \right\rangle$

31. The diagonal of a square is increasing at a constant rate of $\sqrt{2}$ centimeters per second. In terms of the perimeter, P, what is the rate of change of the area of the square in square centimeters per second?

(A)
$$\frac{\sqrt{2}P}{4}$$
 (B) $\frac{4P}{\sqrt{2}}$ (C)2P (D)P (E) $\frac{P}{2}$

- **32.** If *f* is continuous over the set of real numbers and *f* is defined as $f(x) = \frac{x^2 3x + 2}{x 2}$ for all $x \ne 2$, then f(2) =
- (A)-2 (B)-1 (C)0 (D)1 (E)2
- **33.** If $0 \le k \le 2$ and the area between the curves $y = x^2 + 4$ and $y = x^3$ from x = 0 to x = k is 5, then k = 1
- (A)1.239 (B)1.142 (C)1.029 (D)0.941 (E)0.876
- **34.** Determine $\frac{dy}{dx}$ for the curve defined by $x\sin y = 1$.
 - (A) $-\frac{\tan y}{x}$
 - (B) $\frac{\tan y}{x}$
 - (C) $\frac{\sec y \tan y}{x}$
 - (D) $\frac{\sec y}{x}$
 - (E) $-\frac{\sec y}{x}$

APCalculusTest01

35. If
$$f(x) = h(x) + g(x)$$
 for $0 \le x \le 10$,
then $\int_0^{10} (f(x) - 2h(x) + 3) dx =$

(A)
$$2\int_0^{10} (g(x) - h(x) + 3) dx$$
 (B)g(10)-h(10)+30 (C)g(10)-h(10)+30-g(0)-h(0)

(D)
$$\int_0^{10} (g(x) - h(x))dx + 30$$
 (E) $\int_0^{10} (g(x) - 2h(x))dx + 30$

- **36.** Use a fifth-degree Taylor polynomial centered at x = 0 to estimate e^2 .
- (A)7.000 (B)7.267 (C)7.356 (D)7.389 (E)7.667
 - 37. What are all the values of x for which

the series
$$\sum_{n=1}^{\infty} \left(\frac{(x+2)^n}{(n\sqrt{n}3^n)} \right)$$
 converges?

- (A) -3 < x < 3
- **(B)** $-3 \le x \le 3$
- (C) -5 < x < 1
- (D) $-5 \le x \le 1$
- (E) $-5 \le x < 1$
- **38.** Let $f(x) = |x^2 4|$. Let R be the region bounded by f, the X-axis, and the vertical lines X = -3 and X = 3. Let T_6 represent the approximation of the area of R using the trapezoidal rule with n = 6. The quotient

$$\frac{T_6}{\int_{-3}^3 f(x) dx} =$$

(A)0.334 (B)0.978 (C)1.022 (D)1.304 (E)4.666

39. Let R be the region bounded by y = 3 $-x^2$, $y = x^3 + 1$, and x = 0. If R is rotated about the x-axis, the volume of the solid formed could be determined by

(A)
$$\pi \int_0^1 ((x^3 + 1)^2 - (3 - x^2)^2) dx$$

(B)
$$-\pi \int_{1}^{0} ((x^3 + 1)^2 - (3 - x^2)^2) dx$$

(C)
$$2\pi \int_{0}^{1} (x(-x^3-x^2+2))dx$$

(D)
$$\pi \int_{1}^{0} ((x^3 + 1)^2 - (3 - x^2)^2) dx$$

(E)
$$2\pi \int_0^1 (x(x^3 + x^2 - 2)) dx$$

40. Let *f* be defined as

$$f(x) = \begin{cases} -x^2, & x \le 0 \\ \sqrt{x}, & x > 0 \end{cases}$$

and g be defined as

$$g(x) = \int_{-4}^{x} f(t)dt$$
 for $-4 \le t \le 4$.

Which of these is an equation for

the tangent line to g at x = 2?

(A)
$$4x + 3y = 4\sqrt{2} + 72$$

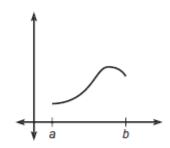
(B)
$$3x\sqrt{2} - 3y = -64 - 2\sqrt{2}$$

(C)
$$3x\sqrt{2} - 3y = 64 - 2\sqrt{2}$$

(D)
$$3x\sqrt{2} - 3y = 64 + 2\sqrt{2}$$

(E)
$$4x + 3y = 4\sqrt{2} - 56$$

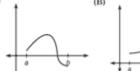
41.

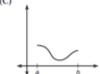


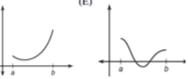
Let $g(x) = \int_{a}^{x} f(t)dt$ t, where $a \le x$ $\le b$. The figure above shows the graph of g on [a,b]. Which of the

following could be the graph of f on [a,b]?

(A)







42. The sum of the infinite geometric series $\frac{4}{5} + \frac{8}{35} + \frac{16}{245} + \frac{32}{1715} + \dots$ is

- (A) 0.622
- **(B)** 0.893
- (C) 1.120
- (D) 1.429
- (E) 2.800

- **43.** Let *f* be a strictly monotonic differentiable function on the closed interval [5,10] such that *f*(5) = 6 and *f*(10) = 26. Which of the following must be true for the function *f* on the interval [5,10]?
 - I. The average rate of change of f is 4.
 - II. The absolute maximum value of f is 26.
 - III. f'(8) > 0.
 - (A) I only
 - (B) II only
 - (C) III only
 - (D) I and II
 - (E) I, II, and III
- **44.** Let F(x) be an antiderivative of $f(x) = e^{2x}$. If F(0) = 2.5, then F(5) =
 - (A) 150.413
 - (B) 11013.233
 - (C) 11015.233
 - (D) 22026.466
 - (E) 22028.466
- **45.** The base of a solid is the region in the first quadrant bounded by $y = -x^2 + 3$. The cross sections perpendicular to the *x*-axis are squares. Find the volume of the solid.
 - (A) 3.464
 - (B) 8.314
 - (C) 8.321
 - (D) 16.628
 - (E) 21.600

APCalculusTest01

1. D	7. C	13. B	19. C	24. A
2. C	8. B	14. E	20. D	25. C
3. C	9. C	15. A	21. D	26. C
4. B	10. E	16. E	22. E	27. E
5. C	11. E	17. D	23. D	28. A
6. B	12. D	18. E		
29. B	33. A	37. D	40. D	43. E
30. D	34. A	38. B	41. A	44. C
31. E	35. D	39. D	42. C	45. B
32. D	36. B			

p.593~602 ANS p.605