§ Additional techniques of integration

$$\frac{d}{dx}\arctan x = \frac{1}{1+x^2} \qquad \frac{d}{dx}(\sin^{-1}x) = \frac{1}{\sqrt{1-x^2}} \qquad \int u dv = uv - \int v du$$

1. Evaluate
$$\int \frac{1-2x}{1+x^2} dx$$

$$\arctan x - \ln(1+x^2) + C$$

2. Evaluate
$$\int \frac{1}{1-e^x} dx$$

$$x - \ln(1 - e^x) + C$$

3. Evaluate
$$\int \frac{x^3 - 3x}{x^2 - 1} dx$$

$$\frac{1}{2}x^2 - \ln(x^2 - 1) + C$$

4. Evaluate
$$\int \frac{1}{\sqrt{4x-x^2}} dx$$

$$\sin^{-1}(\frac{x-2}{2}) + C$$

$$5. \qquad \int_2^3 \frac{1}{x^2 - 4x + 5} \, dx =$$

$$\frac{\pi}{4}$$

$$6. \qquad \int x \sin x dx =$$

7.
$$\int \arctan x dx =$$

$$x \arctan x - \frac{1}{2} \ln(1 + x^2) + C$$

$$8. \qquad \int_0^2 x e^x dx =$$

$$e^{2} + 1$$

x	f(x)	g(x)	f'(x)	g'(x)
1	-2	3	4	-1
3	2	-1	-3	5

The table above gives values of $\,f\,$, $\,f'\,$, $\,g\,$, and $\,g'\,$ for selected values of $\,x\,$.

9. If
$$\int_{1}^{3} f(x)g'(x) dx = 8$$
, then $\int_{1}^{3} f'(x)g(x) dx =$

10. Evaluate
$$\int_0^\infty x e^{-x^2} dx =$$

11. Evaluate
$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx = \pi$$

12. Find the general solution of
$$(x+3)y'=2y$$
 $y=C(x+3)^2$

13. If y=m x+ b is a solution to the differential equation
$$\frac{dy}{dx} = \frac{1}{4}x - y + 1$$
 om + b= ?

Consider the differential equation $\frac{dy}{dx} = \frac{y^2(1-2x)}{3}$.

(a) On the axis provided sketch a slope field for the given differential equation at the nine points indicated.

- (b) Find $\frac{d^2y}{dx^2}$ in terms of x and y.
- (c) Let y = f(x) be the particular solution to the differential equation with the initial condition $y(\frac{1}{2}) = 4$. Does f have a relative minimum, a relative maximum, or neither at $x = \frac{1}{2}$? Justify your answer.
- (d) Find the particular solution y = f(x) to the differential equation with the initial condition $y(\frac{1}{2}) = 4$.

(d)
$$y = \frac{3}{x^2 - x + 1}$$

(b)
$$\frac{d^2y}{dx^2} = \frac{1}{3} \left[-2y^2 + (2y - 4xy) \frac{y^2(1-2x)}{3} \right]$$

(c)
$$\frac{dy}{dx}\Big|_{(\frac{1}{2},4)} = 0$$
 and $\frac{d^2y}{dx^2}\Big|_{(\frac{1}{2},4)} = -\frac{32}{3} < 0$

Therefore, f has a relative maximum at x = 1/2.

Consider the differential equation $\frac{dy}{dx} = -2x + y + 1$.

(a) On the axis provided sketch a slope field for the given differential equation at the nine points indicated.

- (b) Find $\frac{d^2y}{dx^2}$ in terms of x and y. Describe the region in the xy-plane in which all the solution curves to the differential equation are concave down.
- (c) Let y = f(x) be the particular solution to the differential equation with the initial condition f(0) = -1. Does f have a relative minimum, a relative maximum, or neither at x = 0? Justify your answer.
- (d) Find the value of the constants m and b, for which y = mx + b is a solution to the differential equation.

15.

(b)
$$\frac{d^2y}{dx^2} = -2x + y - 3$$
 才對

(d)m=-2x+(m x+ b)+1 is an identity , so m=2, b=1

(d)
$$m = 2$$
, $b = 1$

(b)
$$\frac{d^2y}{dx^2} = -2x + y - 1$$
 If the curve is CD, $y'' < 0$.
 $-2x + y - 1 < 0 \implies y < 2x + 1$

Therefore, solution curves will be concave down on the half-plane below the line y = 2x + 1.

(c)
$$\frac{dy}{dx}\Big|_{(0,-1)} = 0$$
 and $\frac{d^2y}{dx^2}\Big|_{(0,-1)} < 0$. Therefore, f has

a relative maximum at (0,-1).

5

The number of bacteria in a culture increases at a rate proportional to the number present. If the number of bacteria was 600 after 3 hours and 19,200 after 8 hours, when will the population reach 120,000?

t ≈ 10.646

Note that $y = ky \Rightarrow y = Ae^{kt}$

A population is modeled by a function P that satisfies the logistic differential equation $\frac{dP}{dt} = \frac{P}{2} \left(3 - \frac{P}{20} \right)$, where the initial population P(0) = 100 and t is the time in years.

- (a) What is $\lim_{t\to\infty} P(t)$?
- (b) For what values of P is the population growing the fastest?
- 17. (c) Find the slope of the graph of P at the point of inflection.

(a) Write the differential equation in the standard form.

$$\frac{dP}{dt} = \frac{P}{2} \left(3 - \frac{P}{20} \right) = \frac{3P}{2} \left(1 - \frac{P}{60} \right)$$

$$\lim_{t \to \infty} P(t) = A = 60$$

(b) The population is growing the fastest when $P = \frac{A}{2}$.

$$P = \frac{A}{2} = \frac{60}{2} = 30$$

(c) The graph of P has a point of inflection at $P = \frac{A}{2}$. So, when P = 30,

$$\frac{dP}{dt}\Big|_{P=30} = \frac{30}{2} \left(3 - \frac{30}{20} \right) = 22.5$$

§ Euler's method and logistic models with differential equations

Consider the differential equation $\frac{dy}{dx} = 2x + y$.

(a) On the axis provided, sketch a slope field for the given differential equation at the twelve points indicated, and sketch the solution curve that passes through the point (1,1).

- (b) Let f be the function that satisfies the given differential equation with the initial condition f(1) = 1. Use Euler's method, starting at x = 1 with a step size of 0.1, to approximate f(1.2). Show the work that leads to your answer.
- (c) Find the value of b for which y = -2x + b is a solution to the given differential equation. Show the work that leads to your answer.
- (d) Let g be the function that satisfies the given differential equation with the initial condition g(1) = -2. Does the graph of g have a local extremum at the point (1, -2)? If so, is the point a local maximum or a local minimum? Justify your answer.

1.

- (b) 1.65
- (c) -2
- (d) g has a local minimum at (1,-2).

7

§ Arc length and distance traveled along a smooth curve

A particle moves in the xy-plane so that its position at any time t, $0 \le t \le 4$, is given by the equations $x(t) = \cos t + t \sin t$ and $y(t) = \sin t - t \cos t$.

- (a) Sketch the curve in the *xy*-plane for $0 \le t \le 4$. Indicate the direction in which the curve is traced as t increases.
- (b) At what time t, 0 < t < 4, does the line tangent to the path of the particle have a slope of -1?
- (c) At what time t, 0 < t < 4, does x(t) attain its maximum value? What is the position (x(t), y(t)) of the particle at this time?
- (d) At what time t, 0 < t < 4, is the particle on the y-axis?

1.

(a)

(b)
$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\cos t - (-t\sin t + \cos t)}{-\sin t + (t\cos t + \sin t)} = \frac{t\sin t}{t\cos t} = \tan t$$
So
$$\frac{dy}{dx} = \tan t = -1 \implies t = \tan^{-1}(-1) = 3\pi/4.$$

(c)
$$x'(t) = -\sin t + (\sin t + t\cos t) = t\cos t$$

 $x'(t) = 0 \implies t = \pi/2$, for $0 < t < 4$.

x(t) attains its maximum value when $t = \pi/2$.

$$x(\frac{\pi}{2}) = \cos\frac{\pi}{2} + \frac{\pi}{2}\sin\frac{\pi}{2} = \frac{\pi}{2}$$
$$y(\frac{\pi}{2}) = \sin\frac{\pi}{2} - \frac{\pi}{2}\cos\frac{\pi}{2} = 1$$

The position when $t = \pi/2$ is $(\frac{\pi}{2}, 1)$.

(d) The particle is on the y-axis when x(t) = 0.

$$x(t) = \cos t + t \sin t = 0$$

Use a graphing calculator (in function mode) to find the value of t which makes $\cos t + t \sin t = 0$.

For
$$0 < t < 4$$
, $x(t) = 0$ when $t = 2.798$.

A particle moves in the xy-plane so that its position at any time t, for $0 \le t$, is given by $x(t) = e^t$ and $y(t) = 2\cos(t)$.

- (a) Find the distance traveled by the particle from t = 0 to t = 2.
- (b) Find the magnitude of the displacement of the particle between time t = 0 and t = 2.

1.

(a)7.035 (b)6.988

(a)
$$\int_0^2 \sqrt{(x'(t))^2 + (y'(t))^2} dt \approx$$
 (b) $\sqrt{(e^2 - 1)^2 + (2\cos 2 - 2)^2} \approx 6.988$

An object moving along a curve in the xy-plane is at position (x(t), y(t)) at time t, where $\frac{dx}{dt} = 1 + \cos(e^t)$ and $\frac{dy}{dt} = e^{(2-t^2)}$ for $t \ge 0$.

- (a) At what time t is the speed of the object 3 units per second?
- (b) Find the acceleration vector at time t = 2.
- (c) Find the total distance traveled by the object over the time interval $1 \le t \le 4$.
- (d) Find the magnitude of the displacement of the object over the time interval $1 \le t \le 4$.

(a)
$$t = 0.950$$
 (b) $a(2) = \left(-e^2 \sin(e^2), \frac{-4}{e^2}\right)$ (c) 3.544 (d) 2.954

(c)
$$\int_{1}^{4} \sqrt{(1+\cos e^{t})^{2} + (e^{2-t^{2}})^{2}} dt \approx 3.544$$

§ Parameter equations • polar coordinates • and vector-valued functions

A curve is defined by the polar equation $r = 4\sin(2\theta)$ for $0 \le \theta \le \frac{\pi}{2}$.

- (a) Graph the curve.
- (b) Find the slope of the curve at the point where $\theta = \pi/4$.
- (c) Find an equation in terms of x and y for the line tangent to the curve at the point where $\theta = \frac{\pi}{4}$.
- (d) Find an interval where the curve is getting closer to the origin.
- (e) Find the value of θ in the interval $0 \le \theta \le \frac{\pi}{2}$ such that the point on the curve has the greatest distance from the origin.

(b)-1 (c) $y = -x + 4\sqrt{2}$ (d) $\frac{\pi}{4} < \theta < \frac{\pi}{2}$ (e) $\theta = \frac{\pi}{4}$

(b)
$$\frac{dy}{d\theta} \Big|_{\theta = \frac{\pi}{4}} = \dots = -1$$

$$(d)\frac{dr}{d\theta} < 0$$

1.

The polar curve $r = \sqrt{\theta + \cos(2\theta)}$, for $0 \le \theta \le \pi$, is drawn in the figure above.

- (a) Find $\frac{dr}{d\theta}$, the derivative of r with respect to θ .
- (b) Find the angle θ that corresponds to the point on the curve with x-coordinate 0.5.
- (c) For $\frac{\pi}{12} < \theta < \frac{5\pi}{12}$, $\frac{dr}{d\theta}$ is negative. What does this fact say about r? What does this fact say about the curve?
- (d) Find the value of θ in the interval $0 \le \theta \le \frac{\pi}{2}$ that correspond to the point on the curve in the first quadrant with the least distance from the origin. Justify your answer.

2.

(a)
$$\frac{dr}{d\theta} = \frac{1 - 2\sin(2\theta)}{2\sqrt{\theta + \cos(2\theta)}}$$
 (b) $\theta = 0.910$

r is decreasing on this interval. The curve is getting closer to the origin.

(d)
$$\theta = \frac{5\pi}{12}$$

Find the area of the region that lies inside the circle $r = 3\cos\theta$ and outside the cardioid $r = 1 + \cos\theta$.

3.

Note that $\cos 2\theta = 2\cos^2 \theta - 1$

So
$$\int \cos^2 \theta d\theta = \int \frac{1 + \cos 2\theta}{2} d\theta$$

4. The area of the shaded region that lies inside the polar curves $r = \sin \theta$ and

$$r = \cos \theta$$
 is____

$$\frac{1}{8}(\pi-2)$$

$$2 \times \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{2} r^2 d\theta = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos^2 \theta d\theta =$$

5. The area of the region bounded by the polar curve $r = \theta$ and the x-axis is $\frac{\pi^3}{6}$

§ infinite sequences and series

The Integral Test

If f is positive, continuous, and decreasing on $\left[1,\infty\right)$ and $a_n=f(n)$, then

$$\sum_{n=1}^{\infty} a_n \quad \text{and} \quad \int_{1}^{\infty} f(x) \, dx$$

either both converge or both diverge. In other words:

- 1. If $\sum_{n=1}^{\infty} a_n$ is convergent, then $\int_{1}^{\infty} f(x) dx$ is convergent.
- 2. If $\sum_{n=1}^{\infty} a_n$ is divergent, then $\int_{1}^{\infty} f(x) dx$ is divergent.

Determine whether the series is convergent or divergent.

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$$

(b)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n}$$

1

(a) convergent (b) divergent

Note that
$$\int \frac{\ln x}{x} dx = \frac{1}{2} (\ln x)^2 + C$$

p- Series and Harmonic Series

The *p*-series
$$\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \cdots$$

is convergent if p > 1 and divergent if 0 .

For
$$p=1$$
, the series $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$ is called **harmonic series**.

Direct Comparison Test

Let $0 < a_n \le b_n$ for all n.

- 1. If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.
- 2. If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} b_n$ diverges.

Limit Comparison Test

If $a_n > 0$, $b_n > 0$, and $\lim_{n \to \infty} \frac{a_n}{b_n} = L$, where L is finite and positive, then both series either converge or both diverge.

Note: When choosing a series for comparison, you can disregard all but the highest powers of n in both the numerator and denominator.

Determine whether the series is convergent or divergent.

(a)
$$\sum_{n=2}^{\infty} \frac{n}{n^2 - 3}$$

(b)
$$\sum_{n=1}^{\infty} \frac{\sin^2 n}{\sqrt{n^3} + 1}$$

(a) divergent (b)convergent

$$\frac{\sin^2 n}{\sqrt[3]{n}+1} < \frac{1}{\sqrt[3]{n}+1} < \frac{1}{\sqrt[3]{n}}$$

Alternating Series Test

Let $a_n > 0$. The alternating series

$$\sum_{n=1}^{\infty} (-1)^n a_n \text{ and } \sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

converge if the following two conditions are met.

1. $\lim_{n\to\infty} a_n = 0$ 2. $a_{n+1} \le a_n$, for all n greater than some integer N.

Alternating Series Estimation Theorem (Error Bound)

If S_n is a partial sum and $S = \sum_{n=1}^{\infty} (-1)^n a_n$ is the sum of a convergent alternating series that satisfies the condition $a_{n+1} \le a_n$, then the remainder $R_n = S - S_n$ is smaller than a_{n+1} , which

$$|R_n| = |S - S_n| \le a_{n+1}$$

is the absolute value of the first neglected term.

Definition of Absolute and Conditional Convergence

- 1. $\sum a_n$ is absolutely convergent if $\sum |a_n|$ converges.
- 2. $\sum a_n$ is **conditionally convergent** if $\sum a_n$ converge but $\sum |a_n|$ diverges.

Determine whether the series is convergent or divergent.

(a) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$

(b) $\sum_{n=1}^{\infty} (-1)^n \frac{n}{2n-1}$

(a)convergent (b)divergent

Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

(a) $\sum_{n=1}^{\infty} \frac{(-1)^n \sqrt[n]{e}}{n^2}$

(b) $\sum_{n=1}^{\infty} (-1)^{n+1} n^{-2/3}$

(a) absolutely convergent (b)conditionally convergent

Note that $0 \le \frac{\sqrt[n]{e}}{n^2} \le \frac{e}{n^2} = e \times \frac{1}{n^2}$

Let
$$f(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + -\frac{(-1)^n x^{2n}}{(2n)!} + \dots$$

Use the alternating series error bound to show that $1 - \frac{1}{2!} + \frac{1}{4!}$ approximates f(1)

with an error less than $\frac{1}{500}$.

3.

$$f(1) = 1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} + \dots + \frac{(-1)^n}{(2n)!} + \dots$$

Since series is alternating, with terms convergent to 0 and decreasing in absolute value, the error is less than the first neglected term.

So,
$$|f(1) - (1 - \frac{1}{2!} + \frac{1}{4!})| \le \frac{1}{6!} = \frac{1}{720} < \frac{1}{500}$$
.

Ratio Test

Let $\sum a_n$ be a series with nonzero terms.

1.
$$\sum a_n$$
 converges absolutely if $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$.

2.
$$\sum a_n$$
 diverges if $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$ or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$.

3. The Ratio Test is inconclusive if
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$$
.

Determine whether the series is convergent or divergent.

(a)
$$\sum_{n=1}^{\infty} \frac{3^n}{n!}$$

(b)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^3}{5^n}$$
 (c) $\sum_{n=1}^{\infty} \frac{3^n}{2^n - 1}$

(c)
$$\sum_{n=1}^{\infty} \frac{3^n}{2^n - 1}$$

(a) converge (b)converge (c)diverge

Determine whether the series is conditionally convergent or absolute convergent.

(a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n}}{n+3}$$
 (b) $\sum_{n=1}^{\infty} \frac{(-1)^n e^n}{n!}$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n e^n}{n!}$$

2.

(a)conditionally converge (b)absolutely converge

Find the radius of convergence and interval of convergence of

the series
$$\sum_{n=0}^{\infty} \frac{(-2)^n x^n}{\sqrt{n+3}}.$$

$$R = \frac{1}{2} \quad (-\frac{1}{2}, \frac{1}{2}]$$

What are all values of x for which the series $\sum_{n=0}^{\infty} \frac{n(x-2)^n}{3^n}$ converges?

(A)
$$-1 < x < 5$$
 (B) $-1 < x \le 5$ (C) $-2 \le x < 4$ (D) $-2 < x \le 4$

(B)
$$-1 < x < 5$$

(C)
$$-2 \le x < 4$$

(D)
$$-2 < x < 4$$

What are all values of x for which the series $\sum_{n=1}^{\infty} n!(3x-2)^n$ converges?

5.

(A) No values of
$$x$$
 (B) $(-\infty, \frac{2}{3}]$ (C) $x = \frac{2}{3}$ (D) $[\frac{2}{3}, \infty)$

(B)
$$(-\infty, \frac{2}{3}]$$

(C)
$$x = \frac{2}{3}$$

(D)
$$[\frac{2}{3}, \infty)$$

C

17

The function f is defined by the power series

$$f(x) = \sum_{n=0}^{\infty} (-1)^n \frac{(2n+1)x^{2n}}{(2n)!} = 1 - \frac{3x^2}{2!} + \frac{5x^4}{4!} - \frac{7x^6}{6!} + \dots + (-1)^n \frac{(2n+1)x^{2n}}{(2n)!} + \dots$$

for all real numbers x.

- (a) Find f'(0) and f''(0). Determine whether f has a local maximum, a local minimum, or neither at x = 0. Give a reason for your answer.
- (b) Show that $1 \frac{3}{2!} + \frac{5}{4!}$ approximates f(1) with an error less than $\frac{1}{100}$.
- (c) Let g be the function given by $g(x) = \int_0^x f(t) dt$. Write the first four terms and the general term of the power series expansion of $\frac{g(x)}{x}$.

6.

(a) f'(0) = 0, f''(0) = -3, f has a local maximum at x = 0 because f'(0) = 0 and f''(0) < 0.

(b)
$$\left| f(1) - (1 - \frac{3}{2!} + \frac{5}{4!}) \right| \le \frac{7}{6!} = \frac{7}{720} < \frac{1}{100}$$
 (c) $1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + \dots$

Lagrange Error Bound

If f has n+1 derivatives at c and $R_n(x)$ is the remainder term of the Taylor polynomial $P_n(x)$, then $f(x) = P_n(x) + R_n(x)$.

So $R_n(x) = f(x) - P_n(x)$ and the absolute value of $R_n(x)$ satisfies the following inequality.

$$|R_n(x)| = |f(x) - P_n(x)| \le \max |f^{(n+1)}(k)| \cdot \frac{|x - c|^{n+1}}{(n+1)!}$$

where $\max |f^{(n+1)}(k)|$ is the maximum value of $f^{(n+1)}(k)$ between x and c.

The remainder $R_n(x)$ is called the **Lagrange Error Bound** (or **Lagrange form of the remainder**).

Let $P(x) = 3 - 2(x - 2) + 5(x - 2)^2 - 12(x - 2)^3 + 3(x - 2)^4$ be the fourth-degree Taylor polynomial for the function f about x = 2. Assume f has derivatives of all orders for all real numbers.

- (a) Find f(2) and f'''(2).
- (b) Write the third-degree Taylor polynomial for f' about 2 and use it to approximate f'(2.1).
- (c) Write the fourth-degree Taylor polynomial for $g(x) = \int_{2}^{x} f(t) dt$ about 2.
- (d) Can f(1) be determined from the information given? Justify your answer. 7.

(a)
$$f(2) = 3$$
, $f'''(2) = -72$ (b) $P_3(x) = -2 + 10(x - 2) - 36(x - 2)^2 + 12(x - 2)^3$, $f'(2.1) = -1.348$ (c) $3(x - 2) - (x - 2)^2 + \frac{5}{3}(x - 2)^3 - 3(x - 2)^4$ (d) No.

Let f be the function given by $f(x) = \sin(2x) + \cos(2x)$, and let P(x) be the third-degree Taylor polynomial for f about x = 0.

- (a) Find P(x).
- (b) Find the coefficient of x^{19} in the Taylor series for f about x = 0.
- (c) Use the Lagrange error bound to show that $\left| f(\frac{1}{5}) P(\frac{1}{5}) \right| < \frac{1}{100}$
- (d) Let h be the function given by $h(x) = \int_0^x f(t) dt$. Write the third-degree Taylor polynomial for h about x = 0.

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots, \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$
(a) $P(x) = 1 + 2x - 2x^2 - \frac{4}{3}x^3$ (b) $\frac{(-2)^{19}}{19!}$ (c) $32 \cdot \frac{0.0016}{24} = \frac{4}{1875} < \frac{1}{100}$ (d) $h(x) = x + x^2 - \frac{2}{3}x^3$

(c)
$$|R_3(x)| = |f(x) - P_3(x)| \le \max_{0 \le k \le \frac{1}{5}} |f^{(4)}(k)| \times \frac{(\frac{1}{5} - 0)^4}{4!}$$
, $f^{(4)}(x) = 16\sin 2x + 16\cos 2x$

$$|f^{(4)}(x)| \le 16 + 16 = 32$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots, \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots$$
X 用 2x 代入 得

$$f(x) = \sin 2x + \cos 2x = \left\{2x - \frac{(2x)^3}{3!} + \dots\right\} + \left\{1 - \frac{(2x)^2}{2!} + \dots\right\} = 1 + 2x - 2x^2 - \frac{4}{3}x^3 + \dots$$

所以(a)
$$P_3(x) = 1 + 2x - 2x^2 - \frac{4}{3}x^3$$

(b)f(x)在 x=0 的展開式中
$$x^{19}$$
的係數是 $-\frac{(2x)^{19}}{19!}$ 的係數,即 $-\frac{2^{19}}{19!}$

我們注意到 19 除以 4,餘數=3,是在 sin(2x)的展開式中,是負號。

(c)看前面 Lagrange Error Bound

$$|R_3| = |f(x) - P_3(x)| \le \max_{c \le k \le x} |f^{(4)}(k)| \times \frac{(x-c)^4}{4!}$$
, Now c=0, $x = \frac{1}{5}$

所以
$$\left| f(\frac{1}{5}) - P_3(\frac{1}{5}) \right| \le 32 \times \frac{(\frac{1}{5} - 0)^4}{4!} = \frac{4}{1875} < \frac{1}{100}$$

Note that $|\sin 2x| \le 1, |\cos 2x| \le 1$, $f^{(4)}(x) = 16\sin 2x + 16\cos 2x \le 16 + 16 = 32$

(d)
$$h(x) = \int_0^x f(t)dt = \int_0^x (1+2t-2t^2-\frac{4}{3}t^3+...)dt = x+x^2-\frac{2}{3}x^3-...$$