§ Limitation \＆extreme values

Graph of f

1．The graph of the function f is shown in the figure，The value $\lim _{x \rightarrow 0} f\left(1-x^{2}\right)=$
$\lim _{x \rightarrow 0} f\left(1-x^{2}\right)=\lim _{x \rightarrow 1^{-}} f(x)=3$

2．The derivative of the function of f is given by $f^{\prime}(x)=e^{-x} \cos \left(x^{2}\right)$ ，for all real numbers x 。 What is the minimum value of $\mathrm{f}(\mathrm{x})$ for $-1 \leq x \leq 1$
（A）$f(-1) \quad$（B）$f(-0.762) \quad$（C）$f(1)$
（D）There is no minimum value of $\mathrm{f}(\mathrm{x})$ for $-1 \leq x \leq 1$
$f(x)=\int_{-1}^{x} f^{\prime}(t) d t=\int_{-1}^{x} e^{-t} \cos \left(t^{2}\right) d t$
因為 $F(x)=e^{-x} \cos \left(x^{2}\right)>0$ and decreasing for $-1 \leq x \leq 1$
所以 $\mathrm{f}(\mathrm{x})$ 在 $\mathrm{x}=-1$ 時有最小值

3．The function f given by $f(x)=9 x^{\frac{2}{3}}+3 x-6$ has a relative minimum at $\mathrm{x}=$

（A）－8
（B）$-\sqrt[3]{2}$
（C）－1
（D）$-\frac{1}{8}$
（E） 0
$f^{\prime}(x)=6 x^{-\frac{1}{3}}+3=0, x=-8$
$\lim _{x \rightarrow 0^{-}} f^{\prime}(x) \rightarrow-\infty, \lim _{x \rightarrow 0^{+}} f^{\prime}(x) \rightarrow \infty$
在 $\mathrm{x}=0$ 有 relative minimum

4．The figure left shows the graph of f^{\prime} ，the derivative f for $0 \leq x \leq 2$ 。What is the value of x at which the absolute minimum of f occurs ？
（A） 0 （B）$\frac{1}{2}$
（C） 1
（D）$\frac{3}{2}$
（E） 2
E
$f^{\prime}(x)=0, x=0,1,2$
$f(x)=\int_{0}^{x} f^{\prime}(t) d t$ ，考慮 $\mathrm{x}=0,1,2$

顯然 $\mathrm{f}(2)$ 有最小值 $(\because$ 圖形在 x 軸下方時 積分值＜0）
§ Series
1．Let f be the function given by $f(x)=\frac{1}{2+x} \circ$ What is the coefficient of x^{3} in the Taylor series for f about $x=0$ ？
（A）$-\frac{3}{8}$
（B）$-\frac{1}{8}$
（C）$-\frac{1}{16}$
（D）$\frac{1}{24}$
（E）$\frac{1}{16}$
$\frac{1}{1+x}=1-x+x^{2}-x^{3}+\ldots$
$\frac{1}{2+x}=\frac{1}{2}\left(\frac{1}{1+\frac{1}{2} x}\right)=\frac{1}{2}\left\{1-\frac{1}{2} x+\left(\frac{1}{2} x\right)^{2}-\left(\frac{1}{2} x\right)^{3}+\ldots\right\}$
So the coefficient fx^{3} is $\frac{1}{2} \times\left(-\frac{1}{8}\right)=-\frac{1}{16}$

2．The function f has derivative of all orders for all real numbers，and $f^{(4)}(x)=e^{\sin x}$ 。If the third－degree Taylor polynomial for f about $\mathrm{x}=0$ is used to approximate f on the interval $[0,1]$ ，what is the Lagrange error bound for the maximum error on the interval $[0,1]$ ？
（A）0．019
（B）0．097
（C）0．113
（D） 0.399
（E） 0.417
B
$\left|R_{n}\right| \leq \frac{f^{(n+1)}(z)|x-a|^{n+1}}{(n+1)!}, \quad \mathrm{z}$ between a and $\mathrm{x}, \mathrm{a}=0$
$\frac{e^{\sin 1}}{4!} \approx 0.0966$
$\sin (1)==0.01745 \quad \sin (57.3)=0.8415$

3．If the power series $\sum_{n=0}^{\infty} a_{n}(x-4)^{n}$ converges at $\mathrm{x}=7$ and diverges at $\mathrm{x}=9$ ，which of the following must be true？
I．The series converges at $x=1$
II．The series converges at $\mathrm{x}=2$
III．The series diverges at $x=-1$
（A）I only（B）II only（C）I and II only（D）II and III only B
$\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}(x-4)^{n+1}}{a_{n}(x-4)^{n}}\right|<1, \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}(x-4)^{n+1}}{a_{n}(x-4)^{n}}\right|=1$ 是不定狀況

§ integration

1．The base of a solid is the region enclosed by the curve $\frac{x^{4}}{16}+\frac{y^{4}}{81}=1 \circ$ For the solid ，each cross section perpendicular to the x －axis is a semicircle \circ What is the volume of the solid ？
（A）12．356（B） 15.732 （C）22．249（C）24．712（E）49．425
$\int_{-2}^{2} \frac{1}{2} \pi y^{2} d x=9 \pi \int_{0}^{2} \sqrt{1-\frac{x^{4}}{16}} d x=9 \pi \times 1.7481 \approx 49.426$

Let R be the region enclosed by the graph of $f(x)=x^{4}-2.3 x^{3}+4$ and the horizontal line $y=4$ ，as shown in the figure above．
（a）Find the volume of the solid generated when R is rotated about the horizontal line $y=-2$ ．
（b）Region R is the base of a solid．For this solid，each cross section perpendicular to the x－axis is an isosceles right triangle with a leg in R ．Find the volume of the solid．
（c）The vertical line $x=k$ divides R into two regions with equal areas． Write，but do not solve，an equation involving integral expressions whose solution gives the value k ．

（b） $\int_{0}^{2.3} \frac{1}{2}(4-f(x))^{2} d x=3.574$

Polar coordinate

1. Let R be the region in the first quadrant that is bounded above by the polar curve $r=4 \cos \theta$ and below the line $\theta=1$, what is the area of R ?

2. Let R be the region in the first quadrant that is bounded above by the polar curve $r=\cos \theta$ and bounded below by the graph of the polar curve $r=2 \theta$, the two curves intersect when $\theta=0.450 \circ$ What is the area of S ?

$\mathrm{A}+\mathrm{B}=\frac{1}{2} \int_{0.450}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta+\frac{1}{2} \int_{0}^{0.450}(2 \theta)^{2} d \theta$
$=0.18228+0.0607=0.243$
§ parameter equation \& application in physics
3. At time $t \geq 0$, a particle moving in the xy-plane has the velocity vector given by $v(t)=<3,2^{-t^{2}}>\circ$ If the particle at the point $\left(1, \frac{1}{2}\right)$ at time $t=0$, how far is the particle from the origin at time $\mathrm{t}=1$?
(A)2.304 (B)3.107 (C)4.209 (D)5.310
$x(t)=3 t+1, x(1)=4$
$y(1)=\int_{0}^{1} 2^{-t^{2}} d t+\frac{1}{2}=0.810+0.5=1.310$
$\sqrt{16+(1.310)^{2}}=4.209$

The slope field for a certain differential equation is shown as left • Which of the following could be a solution to the differential equation with initial condition $y(0)=1$
（A）$y=\cos x$
（B）$y=1-x^{2}$
（C）$y=e^{x}$
（D）$y=\sqrt{1-x^{2}}$
（E）$y=\frac{1}{1+x^{2}}$
（E）

§ Differential equation
1．The number of student in a cafeteria is modeled by the function P that satisfies the logistic differential equation $\frac{d P}{d t}=\frac{1}{2000} P(200-P)$ ，where t is the time in seconds and $P(0)=25 \circ$ What is the greatest rate of change，in students per seconds，of the number of students in the cafeteria？
（A）5（B）25（C）100（D）200
$P(200-P)=-P^{2}+200 P=-(P-100)^{2}+10000$
$\frac{d P}{d t}$ 的最大值 $=\frac{1}{2000} \times 10000=5$

2．The number of students in a school who have heard a rumor at time t hours is modeled by function P ，the solution to a logistic differential equation。At noon， 50 of the school＇s 500 students have heard the rumor，also at noon ，P is increasing at a rate of 20 students per hour－Which of the following could be the logistic differential equation？
（A）$\frac{d P}{d t}=\frac{1}{1125} P(500-P)$
（B）$\frac{d P}{d t}=\frac{1}{480} P(500-P)$
（C）$\frac{d P}{d t}=\frac{1}{192} P(500-P)$
（D）$\frac{d P}{d t}=\frac{2}{45} P(500-P)$
（E）$\frac{d P}{d t}=\frac{5}{48} P(500-P)$

設 $\frac{d P}{d t}=k P(500-P), \mathrm{P}(0)=50$ at noon,$\frac{\mathrm{dP}}{d t}=20$ at $\mathrm{t}=0$
$20=k \times 50 \times(500-50), k=\frac{1}{1125}$
So the answer is (A)

If $f(x)=\int_{1}^{x^{3}} \frac{1}{1+\ln t} d t$ for $x \geq 1$, then $f^{\prime}(2)=$

$$
\frac{12}{1+\ln 8}
$$

Which of the following limits is equal to $\int_{3}^{5} x^{4} d x$?
(A) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(3+\frac{k}{n}\right)^{4} \frac{1}{n}$
(B) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(3+\frac{k}{n}\right)^{4} \frac{2}{n}$
(C) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(3+\frac{2 k}{n}\right)^{4} \frac{1}{n}$
(D) $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(3+\frac{2 k}{n}\right)^{4} \frac{2}{n}$
2.

Let $y=f(t)$ be a solution to the differential equation $\frac{d y}{d t}=k y$, where k is a constant. Values of f for selected values of t are given in the table above. Which of the following is an expression for $f(t)$?
(A) $4 e^{\frac{t}{2} \ln 3}$
(B) $e^{\frac{t}{2} \ln 9}+3$
(C) $2 t^{2}+4$
3. (D) $4 t+4$

Graph of f

The graph of a differentiable function f is shown above for $-3 \leq x \leq 3$. The graph of f has horizontal tangent lines at $x=-1, x=1$, and $x=2$. The areas of regions A, B, C, and D are 5,4 , 5 , and 3 , respectively. Let g be the antiderivative of f such that $g(3)=7$.
(a) Find all values of x on the open interval $-3<x<3$ for which the function g has a relative maximum. Justify your answer.
(b) On what open intervals contained in $-3<x<3$ is the graph of g concave up? Give a reason for your answer.
(c) Find the value of $\lim _{x \rightarrow 0} \frac{g(x)+1}{2 x}$, or state that it does not exist. Show the work that leads to your answer.
(d) Let h be the function defined by $h(x)=3 f(2 x+1)+4$. Find the value of $\int_{-2}^{1} h(x) d x$.
4.
(a) g has a relative maximum at $x=-2$ since $g^{\prime}=f$ changes sign from positive to negative at $x=-2$.
(b) The graph of g is concave up for $-1<x<1$ and $2<x<3$ because $g^{\prime}=f$ is increasing on those intervals.
(c) Because g is continuous at $x=0, \lim _{x \rightarrow 0} g(x)=g(0)$.
$g(3)=g(0)+\int_{0}^{3} f(x) d x$
$g(0)=g(3)-\int_{0}^{3} f(x) d x=7-(5+3)=-1$

$$
\lim _{x \rightarrow 0} g(x)+1=0 \text { and } \lim _{x \rightarrow 0} 2 x=0
$$

Using L'Hospital's Rule,

$$
\lim _{x \rightarrow 0} \frac{g(x)+1}{2 x}=\lim _{x \rightarrow 0} \frac{g^{\prime}(x)}{2}=\lim _{x \rightarrow 0} \frac{f(x)}{2}=\frac{f(0)}{2}=0
$$

(d)25.5

The position of a particle moving in the $x y$-plane is given by the parametric equations $x(t)=\frac{6 t}{t+1}$ and $y(t)=\frac{-8}{t^{2}+4}$. What is the slope of the line tangent to the path of the particle at the point where $t=2$?
(A) $\frac{1}{2}$
(B) $\frac{2}{3}$
(C) $\frac{3}{4}$
(D) $\frac{4}{3}$
5.

C

For what value of k, if any, is $\int_{0}^{\infty} k x e^{-2 x} d x=1$?
(A) $\frac{1}{4}$
(B) 1
(C) 4
(D) There is no such value of k.
6.

C
The Taylor series for a function f about $x=0$ converges to f for $-1 \leq x \leq 1$. The n th-degree Taylor polynomial for f about $x=0$ is given by $P_{n}(x)=\sum_{k=1}^{n}(-1)^{k} \frac{x^{k}}{k^{2}+k+1}$. Of the following, which is the smallest number M for which the alternating series error bound guarantees that $\left|f(1)-P_{4}(1)\right| \leq M$?
(A) $\frac{1}{5!} \cdot \frac{1}{31}$
(B) $\frac{1}{4!} \cdot \frac{1}{21}$
(C) $\frac{1}{31}$
(D) $\frac{1}{21}$
7.

C

For $x \geq 1$, the continuous function g is decreasing and positive. A portion of the graph of g is shown above. For $n \geq 1$, the nth term of the series $\sum_{n=1}^{\infty} a_{n}$ is defined by $a_{n}=g(n)$. If $\int_{1}^{\infty} g(x) d x$ converges to 8 , which of the following could be true?
(A) $\sum_{n=1}^{\infty} a_{n}=6$
(B) $\sum_{n=1}^{\infty} a_{n}=8$
(C) $\sum_{n=1}^{\infty} a_{n}=10$
(D) $\sum_{n=1}^{\infty} a_{n}$ diverges
8.

C
The function f has derivatives of all orders at $x=0$, and the Maclaurin series for f is $\sum_{n=2}^{\infty} \frac{\ln n}{3^{n} n^{3}} x^{n}$.
(a) Find $f^{\prime}(0)$ and $f^{(4)}(0)$.
(b) Does f have a relative minimum, a relative maximum, or neither at $x=0$? Justify your answer.
(c) Using the ratio test, determine the interval of convergence of the Maclaurin series for f.
9. Justify your answer.
(a) $\frac{f^{\prime}(0)}{1!}=a_{1}=0 \Rightarrow f^{\prime}(0)=0$

$$
\frac{f^{(4)}(0)}{4!}=a_{4}=\frac{\ln 4}{3^{4} 4^{3}} \Rightarrow f^{(4)}(0)=\frac{\ln 4}{3^{4} 4^{3}} \cdot 4!=\frac{\ln 4}{216}
$$

(b) $f^{\prime}(0)=0$

$$
\frac{f^{\prime \prime}(0)}{2!}=a_{2}=\frac{\ln 2}{3^{2} 2^{3}} \Rightarrow f^{\prime \prime}(0)=\frac{\ln 2}{3^{2} 2^{3}} \cdot 2!=\frac{\ln 2}{36}>0
$$

By the Second Derivative Test, f has a relative minimum at $x=0$.
(c) Using the ratio test,

$$
\lim _{n \rightarrow \infty}\left|\frac{\frac{\ln (n+1)}{3^{n+1}(n+1)^{3}} x^{n+1}}{\frac{\ln n}{3^{n} n^{3}} x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\ln (n+1)}{\ln n} \cdot\left(\frac{n}{n+1}\right)^{3} \cdot \frac{x}{3}\right|=\left|\frac{x}{3}\right|<1
$$

$|x|<3$, therefore the radius of convergence is $R=3$, and the series converges on the interval $-3<x<3$.

When $x=3$, the series is $\sum_{n=2}^{\infty} \frac{\ln n}{n^{3}}$.

Because $0<\frac{\ln n}{n^{3}}<\frac{n}{n^{3}}=\frac{1}{n^{2}}$ for all $n \geq 2$ and the p-series $\sum_{n=2}^{\infty} \frac{1}{n^{2}}$ converges, the series $\sum_{n=2}^{\infty} \frac{\ln n}{n^{3}}$ converges by the comparison test.

When $x=-3$, the series is $\sum_{n=2}^{\infty}(-1)^{n} \frac{\ln n}{n^{3}}$.
This series is absolutely convergent because $\sum_{n=2}^{\infty} \frac{\ln n}{n^{3}}$ converges.
The interval of convergence is $-3 \leq x \leq 3$.

Which of the following series converge?
10.
I.) $\sum_{n=1}^{\infty} \frac{n^{2}+3}{n^{2}}$, II.) $\sum_{n=1}^{\infty} \frac{2 n!}{10^{n}}$, III.) $\sum_{n=1}^{\infty} \frac{3^{n}}{4^{n}+1}$
(A)I only (B)II only (C)III only (D)I, III only (E)II , III only

C
11. $\int_{1}^{\infty} \frac{d x}{4+9 x^{2}}=$

$$
\frac{\pi}{12}-\frac{1}{6} \tan ^{-1} \frac{3}{2}
$$

.) The following graph represents the acceleration of an object:

12. Which of the following graphs could represent the position of the object?
a.)
b.)
c.)

d.)

e.)

D
22.) The length of a curve on the interval $[0,5]$ is given as $\int_{0}^{5} \sqrt{1+20 x^{8}} d x$. If this particular curve contains the point $(1,3)$, which of the following could be an equation for this curve?
a.) $y=\frac{2 \sqrt{5}}{5} x^{5}+\frac{14}{5}$
b.) $y=\frac{20}{9} x^{9}+\frac{7}{9}$
c.) $y=\frac{2 \sqrt{5}}{5} x^{5}+\frac{15-2 \sqrt{5}}{5}$
d.) $y=\frac{2 \sqrt{5}}{5} x^{5}+\frac{15}{2 \sqrt{5}}$
13. e.) $y=2 x^{4}+1$

B

14. Calculate the area between the curves $y=e^{x}$ and $y=e^{3 x}$, bounded by the lines $y=1$ and $y=4$

$$
\frac{8}{3} \ln 4-2
$$

15. $\int x \cdot 3^{x^{2}} d x=$
$\frac{3^{x^{2}}}{2 \ln 3}+C$
16. Given $f(x)=\int_{1}^{5 x^{3}} \sin t d t, f^{\prime}(x)=$ $15 x^{2} \sin \left(5 x^{3}\right)$
39.) Which of the following are θ-values at which there are horizontal tangents of $r=4 \theta \sin \theta$ on the interval $[0,2 \pi]$? (Note: Not all of the values may be listed.)
17. I.) $\theta=0$, II.) $\theta=\pi$, III.) 5.6642
(A)I only (B)II only (C)III only (D)I, II ,III (E)None of the above

B
42.) The rate of change of a quantity is given by the differential equation $\frac{d y}{d t}=\frac{6 t+3}{t^{2}+2 t-3}$. If $y(2)=7$, which of the following is the value of the constant term in the equation for y ?
18.
a.) $7-\frac{15}{4} \ln 5$,
b.) $7-\frac{9}{4} \ln 5$,
c.) $7-\frac{15}{4} \ln 2$,
d.) $7-\frac{9}{4} \ln 2$, e.) $7-\frac{15}{4} \ln 7$

A

