1.
$$\lim_{x \to \infty} \frac{(2x-1)(3-x)}{(x-1)(x+3)}$$
 is

- (C) 2
- (D) 3 (E) nonexistent

$$2. \qquad \int \frac{1}{x^2} \, dx =$$

- (A) $\ln x^2 + C$ (B) $-\ln x^2 + C$ (C) $x^{-1} + C$ (D) $-x^{-1} + C$ (E) $-2x^{-3} + C$

3. If
$$f(x) = (x-1)(x^2+2)^3$$
, then $f'(x) =$

(A)
$$6x(x^2+2)^2$$

(B)
$$6x(x-1)(x^2+2)^2$$

(C)
$$(x^2 + 2)^2 (x^2 + 3x - 1)$$

(D)
$$(x^2+2)^2(7x^2-6x+2)$$

(E)
$$-3(x-1)(x^2+2)^2$$

$$4. \qquad \int (\sin(2x) + \cos(2x)) \, dx =$$

(A)
$$\frac{1}{2}\cos(2x) + \frac{1}{2}\sin(2x) + C$$

(B)
$$-\frac{1}{2}\cos(2x) + \frac{1}{2}\sin(2x) + C$$

(C)
$$2\cos(2x) + 2\sin(2x) + C$$

(D)
$$2\cos(2x) - 2\sin(2x) + C$$

(E)
$$-2\cos(2x) + 2\sin(2x) + C$$

5.
$$\lim_{x \to 0} \frac{5x^4 + 8x^2}{3x^4 - 16x^2}$$
 is

- (A) $-\frac{1}{2}$ (B) 0 (C) 1 (D) $\frac{5}{3}$ (E) nonexistent

$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & \text{if } x \neq 2\\ 1 & \text{if } x = 2 \end{cases}$$

- 6. Let f be the function defined above. Which of the following statements about f are true?
 - I. f has a limit at x = 2.
 - II. f is continuous at x = 2.
 - III. f is differentiable at x = 2.
 - (A) I only
 - (B) II only
 - (C) III only
 - (D) I and II only
 - (E) I, II, and III
- 7. A particle moves along the x-axis with velocity given by $v(t) = 3t^2 + 6t$ for time $t \ge 0$. If the particle is at position x = 2 at time t = 0, what is the position of the particle at time t = 1?
 - (A) 4
- (C) 9
- (D) 11
- 8. If $f(x) = \cos(3x)$, then $f'(\frac{\pi}{9}) =$
 - (A) $\frac{3\sqrt{3}}{2}$ (B) $\frac{\sqrt{3}}{2}$ (C) $-\frac{\sqrt{3}}{2}$ (D) $-\frac{3}{2}$ (E) $-\frac{3\sqrt{3}}{2}$

- 9. The graph of the piecewise linear function f is shown in the figure above. If $g(x) = \int_{-2}^{x} f(t) dt$, which of the following values is greatest?
 - (A) g(-3)
- (B) g(-2)
- (C) g(0)
- (D) g(1)
- (E) g(2)

10. The graph of the function f is shown above for $0 \le x \le 3$. Of the following, which has the least value?

$$(A) \int_1^3 f(x) \, dx$$

- (B) Left Riemann sum approximation of $\int_1^3 f(x) dx$ with 4 subintervals of equal length
- (C) Right Riemann sum approximation of $\int_{1}^{3} f(x) dx$ with 4 subintervals of equal length
- (D) Midpoint Riemann sum approximation of $\int_1^3 f(x) dx$ with 4 subintervals of equal length
- (E) Trapezoidal sum approximation of $\int_1^3 f(x) dx$ with 4 subintervals of equal length

11. The graph of a function f is shown above. Which of the following could be the graph of f', the derivative of f?

12. If
$$f(x) = e^{(2/x)}$$
, then $f'(x) =$

- (A) $2e^{(2/x)} \ln x$ (B) $e^{(2/x)}$ (C) $e^{\left(-2/x^2\right)}$ (D) $-\frac{2}{x^2}e^{(2/x)}$ (E) $-2x^2e^{(2/x)}$

13. If
$$f(x) = x^2 + 2x$$
, then $\frac{d}{dx}(f(\ln x)) =$

- (A) $\frac{2\ln x + 2}{x}$ (B) $2x\ln x + 2x$ (C) $2\ln x + 2$ (D) $2\ln x + \frac{2}{x}$ (E) $\frac{2x + 2}{x}$

x	0	1	2	3
f''(x)	5	0	- 7	4

- 14. The polynomial function f has selected values of its second derivative f'' given in the table above. Which of the following statements must be true?
 - (A) f is increasing on the interval (0, 2).
 - (B) f is decreasing on the interval (0, 2).
 - (C) f has a local maximum at x = 1.
 - (D) The graph of f has a point of inflection at x = 1.
 - (E) The graph of f changes concavity in the interval (0, 2).

$$15. \qquad \int \frac{x}{x^2 - 4} \, dx =$$

(A)
$$\frac{-1}{4(x^2-4)^2}+C$$

(B)
$$\frac{1}{2(x^2-4)}+C$$

(C)
$$\frac{1}{2} \ln |x^2 - 4| + C$$

(D)
$$2\ln |x^2 - 4| + C$$

(E)
$$\frac{1}{2}\arctan\left(\frac{x}{2}\right) + C$$

5

- 16. If $\sin(xy) = x$, then $\frac{dy}{dx} =$
 - (A) $\frac{1}{\cos(xy)}$
 - (B) $\frac{1}{x\cos(xy)}$
 - (C) $\frac{1-\cos(xy)}{\cos(xy)}$
 - (D) $\frac{1 y\cos(xy)}{x\cos(xy)}$
 - (E) $\frac{y(1-\cos(xy))}{x}$

Graph of f

- 17. The graph of the function f shown above has horizontal tangents at x = 2 and x = 5. Let g be the function defined by $g(x) = \int_0^x f(t) dt$. For what values of x does the graph of g have a point of inflection?
 - (A) 2 only
- (B) 4 only
- (C) 2 and 5 only
- (D) 2, 4, and 5
- (E) 0, 4, and 6
- 18. In the xy-plane, the line x + y = k, where k is a constant, is tangent to the graph of $y = x^2 + 3x + 1$. What is the value of k?

(E) 1

- (A) -3
- (B) -2
- (C) -1
- (D) 0
- 19. What are all horizontal asymptotes of the graph of $y = \frac{5 + 2^x}{1 2^x}$ in the xy-plane?
 - (A) y = -1 only
 - (B) y = 0 only
 - (C) y = 5 only
 - (D) y = -1 and y = 0
 - (E) y = -1 and y = 5
- 20. Let f be a function with a second derivative given by $f''(x) = x^2(x-3)(x-6)$. What are the x-coordinates of the points of inflection of the graph of f?
 - (A) 0 only
- (B) 3 only
- (C) 0 and 6 only
- (D) 3 and 6 only
- (E) 0, 3, and 6

6

- 21. A particle moves along a straight line. The graph of the particle's position x(t) at time t is shown above for 0 < t < 6. The graph has horizontal tangents at t = 1 and t = 5 and a point of inflection at t = 2. For what values of t is the velocity of the particle increasing?
 - (A) 0 < t < 2
 - (B) 1 < t < 5
 - (C) 2 < t < 6
 - (D) 3 < t < 5 only
 - (E) 1 < t < 2 and 5 < t < 6
- 22. A rumor spreads among a population of N people at a rate proportional to the product of the number of people who have heard the rumor and the number of people who have not heard the rumor. If p denotes the number of people who have heard the rumor, which of the following differential equations could be used to model this situation with respect to time t, where k is a positive constant?
 - (A) $\frac{dp}{dt} = kp$
 - (B) $\frac{dp}{dt} = kp(N p)$
 - (C) $\frac{dp}{dt} = kp(p-N)$
 - (D) $\frac{dp}{dt} = kt(N-t)$
 - (E) $\frac{dp}{dt} = kt(t N)$
- 23. Which of the following is the solution to the differential equation $\frac{dy}{dx} = \frac{x^2}{y}$ with the initial condition y(3) = -2?

(A)
$$y = 2e^{-9+x^3/3}$$

(B)
$$y = -2e^{-9+x^3/3}$$

(C)
$$y = \sqrt{\frac{2x^3}{3}}$$

(D)
$$y = \sqrt{\frac{2x^3}{3} - 14}$$

(E)
$$y = -\sqrt{\frac{2x^3}{3} - 14}$$

24. The function f is twice differentiable with f(2) = 1, f'(2) = 4, and f''(2) = 3. What is the value of the approximation of f(1.9) using the line tangent to the graph of f at x = 2?

(D) 1.3

- (A) 0.4
- (B) 0.6
- (C) 0.7

$$f(x) = \begin{cases} cx + d & \text{for } x \le 2\\ x^2 - cx & \text{for } x > 2 \end{cases}$$

- 25. Let f be the function defined above, where c and d are constants. If f is differentiable at x = 2, what is the value of c + d?
 - (A) -4
- (B) -2
- (C) 0
- (D) 2
- (E) 4
- 26. What is the slope of the line tangent to the curve $y = \arctan(4x)$ at the point at which $x = \frac{1}{4}$?

- (A) 2 (B) $\frac{1}{2}$ (C) 0 (D) $-\frac{1}{2}$ (E) -2

- 27. Shown above is a slope field for which of the following differential equations?
 - (A) $\frac{dy}{dx} = xy$
 - (B) $\frac{dy}{dx} = xy y$
 - (C) $\frac{dy}{dx} = xy + y$
 - (D) $\frac{dy}{dx} = xy + x$
 - (E) $\frac{dy}{dx} = (x+1)^3$

- 28. Let f be a differentiable function such that f(3) = 15, f(6) = 3, f'(3) = -8, and f'(6) = -2. The function g is differentiable and $g(x) = f^{-1}(x)$ for all x. What is the value of g'(3)?
 - (A) $-\frac{1}{2}$
 - (B) $-\frac{1}{8}$
 - (C) $\frac{1}{6}$
 - (D) $\frac{1}{3}$
 - (E) The value of g'(3) cannot be determined from the information given.

Graph of f'

- 76. The graph of f', the derivative of f, is shown above for $-2 \le x \le 5$. On what intervals is f increasing?
 - (A) [-2, 1] only
 - (B) [-2, 3]
 - (C) [3, 5] only
 - (D) [0, 1.5] and [3, 5]
 - (E) [-2, -1], [1, 2], and [4, 5]

Graph of f

- 77. The figure above shows the graph of a function f with domain $0 \le x \le 4$. Which of the following statements are true?
 - I. $\lim_{x\to 2^-} f(x)$ exists.
 - II. $\lim_{x\to 2^+} f(x)$ exists.
 - III. $\lim_{x\to 2} f(x)$ exists.
 - (A) I only
- (B) II only
- (C) I and II only
- (D) I and III only
- (E) I, II, and III

- 78. The first derivative of the function f is defined by $f'(x) = \sin(x^3 x)$ for $0 \le x \le 2$. On what intervals is f increasing?
 - (A) $1 \le x \le 1.445$ only
 - (B) $1 \le x \le 1.691$
 - (C) $1.445 \le x \le 1.875$
 - (D) $0.577 \le x \le 1.445$ and $1.875 \le x \le 2$
 - (E) $0 \le x \le 1$ and $1.691 \le x \le 2$
- 79. If $\int_{-5}^{2} f(x) dx = -17$ and $\int_{5}^{2} f(x) dx = -4$, what is the value of $\int_{-5}^{5} f(x) dx$?

 - (A) -21 (B) -13 (C) 0 (D) 13

- 80. The derivative of the function f is given by $f'(x) = x^2 \cos(x^2)$. How many points of inflection does the graph of f have on the open interval (-2, 2)?
 - (A) One
- (B) Two
- (C) Three
- (D) Four
- (E) Five
- 81. If G(x) is an antiderivative for f(x) and G(2) = -7, then G(4) =
 - (A) f'(4)
 - (B) -7 + f'(4)
 - (C) $\int_2^4 f(t) dt$
 - (D) $\int_{2}^{4} (-7 + f(t)) dt$
 - (E) $-7 + \int_{2}^{4} f(t) dt$
- 82. A particle moves along a straight line with velocity given by $v(t) = 7 (1.01)^{-t^2}$ at time $t \ge 0$. What is the acceleration of the particle at time t = 3?
 - (A) -0.914
- (B) 0.055
- (C) 5.486
- (D) 6.086
- (E) 18.087
- 83. What is the area enclosed by the curves $y = x^3 8x^2 + 18x 5$ and y = x + 5?
 - (A) 10.667
- (B) 11.833
- (C) 14.583
- (D) 21.333
- (E) 32

APCalculus2008AB

- 84. The graph of the derivative of a function f is shown in the figure above. The graph has horizontal tangent lines at x = -1, x = 1, and x = 3. At which of the following values of x does f have a relative maximum?
 - (A) -2 only
- (B) 1 only
- (C) 4 only
- (D) -1 and 3 only
- (E) -2, 1, and 4

	х	-4	-3	-2	-1
	f(x)	0.75	-1.5	-2.25	-1.5
Γ.	f'(x)	-3	-1.5	0	1.5

- 85. The table above gives values of a function f and its derivative at selected values of x. If f' is continuous on the interval [-4, -1], what is the value of $\int_{-4}^{-1} f'(x) dx$?
 - (A) -4.5 (B) -2.25
- (C) 0
- (D) 2.25
- (E) 4.5

t	0	1	2	3	4
v(t)	-1	2	3	0	-4

86. The table gives selected values of the velocity, v(t), of a particle moving along the x-axis. At time t = 0, the particle is at the origin. Which of the following could be the graph of the position, x(t), of the particle for $0 \le t \le 4$?

APCalculus2008AB

- 87. An object traveling in a straight line has position x(t) at time t. If the initial position is x(0) = 2 and the velocity of the object is $v(t) = \sqrt[3]{1+t^2}$, what is the position of the object at time t = 3?
 - (A) 0.431
- (B) 2.154
- (C) 4.512
- (D) 6.512
- (E) 17.408
- 88. The radius of a sphere is decreasing at a rate of 2 centimeters per second. At the instant when the radius of the sphere is 3 centimeters, what is the rate of change, in square centimeters per second, of the surface area of the sphere? (The surface area S of a sphere with radius r is $S = 4\pi r^2$.)
 - (A) -108π
- (B) -72π
- (C) -48π
- (D) -24z
- (E) -16π
- 89. The function f is continuous for $-2 \le x \le 2$ and f(-2) = f(2) = 0. If there is no c, where -2 < c < 2, for which f'(c) = 0, which of the following statements must be true?
 - (A) For -2 < k < 2, f'(k) > 0.
 - (B) For -2 < k < 2, f'(k) < 0.
 - (C) For -2 < k < 2, f'(k) exists.
 - (D) For -2 < k < 2, f'(k) exists, but f' is not continuous.
 - (E) For some k, where -2 < k < 2, f'(k) does not exist.
- 90. The function f is continuous on the closed interval [2, 4] and twice differentiable on the open interval (2, 4). If f'(3) = 2 and f''(x) < 0 on the open interval (2, 4), which of the following could be a table of values for f?

(A)	х	f(x)
	2	2.5
	3	5
	4	6.5

(B)	х	f(x)
	2	2.5
	3	5
	4	7

(C)	х	f(x)
	2	3
	3	5
	4	6.5

(D)	x f(x)	
	2	3
	3	5
	4	7

(E)	х	f(x)
	2	3.5
	3	5
	4	7.5

- 91. What is the average value of $y = \frac{\cos x}{x^2 + x + 2}$ on the closed interval [-1, 3]?
 - (A) -0.085
- (B) 0.090
- (C) 0.183
- (D) 0.244
- (E) 0.732

- 92. A city located beside a river has a rectangular boundary as shown in the figure above. The population density of the city at any point along a strip x miles from the river's edge is f(x) persons per square mile. Which of the following expressions gives the population of the city?
 - (A) $\int_0^4 f(x) \, dx$
 - (B) $7\int_0^4 f(x) dx$
 - (C) $28 \int_0^4 f(x) \, dx$
 - (D) $\int_0^7 f(x) \, dx$
 - $(E) 4 \int_0^7 f(x) dx$