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散度定理/黎曼幾何筆記 

「梯度、旋度、散度。」向量微積分中從靜電場出發到馬克士威爾的電磁學，

這是物理層面。數學方面則統合為 Stokes 定理 d 
 

  。 

古典的向量場理論則從 Green 定理，Stokes 定理到高斯定理(散度定理)是微分幾

何的基礎工作，當然，微分形式(differential forms)與之相輔相成。 

這裡僅就散度定理(divergence theorem)方面，個人學習黎曼幾何的經驗與大家分

享。 

§ 01 nR 中的散度定理寫成這樣 ( )F dV F ndS
 
      

(1)在 3R 中的(1)向量形式為 
S V

E ndS divEdV    

(2) differential forms 的形式： 

是 R3 中的有界區域， Pdy dz Qdz dx Rdx dy        

則 ( )
P Q R

d dx dy dz
x y z


  

    
  

稱為 divergence。 

舉一例： 

S：球心在原點，半徑=1 的
1

8
球面，求 2

S

z dS   

2 2( , ) ( , , 1 )X x y x y x y    

(1,0, ), (0,1, )x y

x y
X X

z z
     

2 2 2 2

2 2 2
, ,x x x y y y

x z xy y z
E X X F X X G X X

z z z

 
          

2 1
dS EG F dxdy dxdy

z
    

2

S R

z dS zdxdy  ，let cos , sinx r y r     

Then 
1

22

0 0
1

6
R

zdxdy r r drd



      

假設 (0,0, ), ( , , )F z n x y z  ，則 2F n z  且 1
yx z

FF F
divF

x y z

 
   
  

 

由散度定理 2 4 1

3 8 6
S S V

z dS F ndS dV
 

         

§ 02 在黎曼流形上 

W 是黎曼流形(M,g)上的向量場 
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1S
1

A(X),X
n

n

n
divW dS






  ，其中 :W XA X W ，是 Levi-Civita 聯絡。 

用李導數(對體積元)的表示： ( ) ( )X XL divX d     ，其中是體積元。 

散度定理就寫成這樣：
X

M M
divX  


  ，其中

X   ， ( X)d div   

註： 

[大域微分幾何] p.335 

( ) ,
S M

divW dM W dS
 

    ，其中 是 S 上朝外的單位法向量。 

例： 

M 是 3R 中的單位球，取 X x y z
x y z

  
  

  
， dx dy dz      

則 3
x y z

divX
x y z

  
   
  

 

左式
4

( ) 3 3 4
3M M

div dx dy dz


          

依定義內積運算為 ( ) x y z

X dx dy dz X dy dz X dz dx X dx dy           

右式
X xdy dz ydx dz zdx dy          

單位球面上，法向量為 n(x,y,z)，故 2 2 2 1X n x y z       

4
M M

dA 
 

    。 

 

另一方面，在 3R 中，
1 2 3

i

i

X X X
divX X

x y z

  
    

  
 

在(M,g)中， i i k

i ikdivX X X   (寫成divX X 

 ) 

又因為
1i

ik k g
g

   ，
1

( )i

idivX g X
g

   

在歐氏空間中直線方程式是 0kx


 ，在黎曼流形中測地線則多了一項變成

0k k i j

ijx x x
  

  。(這是根據最小耦合原理) 

同理，散度在歐氏空間中為 i

idivX X  ，在彎曲空間中的散度則多一項

i k

ik X 。 
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舉一例，在 2S 上計算： 

2 2 2 2 2 2sinds r d r d    ，
2

2 2

0

0 sin
ij

r
g

r 

 
  
 

， 4 2sing r    

考慮 X X X 

 

 
 

 
 

1
( ) [ ( )+ ( )]div X g X g X

g

 

 

 


 
， 2 sing r   

代入計算，化簡得
1 1

( ) (sin )+
sin sin

X
div X X




   

 


 
  

例如取 sin , cosX X     則
sin

( ) 2cos
sin

div X





   

 

在黃武雄老師[大域微分幾何] p.280

1 1

1 1

= , ,
n nw w

S S
n n

n n
divW trA A X X dS X W X dS

 
 

 

        

11

( ),
nn S

n
A X X dS

 

  
 

舉例說明之： 

設 2( , , ) ( , , )W x y z x y z ，則 Jacobian matrix 

2 0 0

0 1 0 , (J ) 2 2

0 0 1

W W

x

J tr x

 
 

  
 
  

  

Operator A： 1 2 3( ) 2WA X J X xX X X       

2 2 2

1 2 3( ), 2A X X xX X X     

因為對稱性， 2S ：
2

2 4

3
i

S
X dS


  for i=1,2,3 

所以
2

4
( ), (2 2)

3S
A X X dS x


 

1

1

3 4
( ), (2 2) 2 2 ( )

4 3
n W

S
n

n
A X X dS x x tr J



 




       

 

再舉例驗證
2

3
( ) ( ),

4 S
tr A A X X dS


   

取 F(x,y,z)=(yz,xz,xy)，X=
1 2 3( , , )X X X 是 2S 上的單位向量， ( ) X FA X F J X     
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(1) Jacobian matrix of J：

0

0

0

F

z y

J z x

y x

 
 

  
 
 

 ， ( ) ( ) 0Ftr A tr J    

(2) 
1 3

1 3

1 2

( ) X F

zX yX

A X F J X zX xX

yX xX

 
 

      
  

  

1 2 1 3 2 3( ), ... 2 2 2A X X zX X yX X xX X      

(3) 2S 上形如
1 2X X  者皆為奇函數，因此 

2 1 2 ... 0
S

X X dS     

所以
2S

( ), 0A X X dS    

 

§ 03 Green identity 的形式 

u、v 是 nR 的子集中的光滑純量函數，的邊界逐段光滑，則

( )
v

u v u v d u dS
n 


    

  …(1) 

其中，是 Lalpacian，是 gradient，
v

n




是 normal derivative v n    

註：[大域微分幾何] p.336 Green identity： ( )M
S

f
f dM dS

 


 

    

 

舉一例說明 
2 2 2 2 2 2: 1, ( , , ) , ( , , )x y z u x y z x y z v x y z x         則 

左式中， (2 ,2 ,2 ), (1,0,0)u x y z v    ，左式= 2 0xd


  ( 因為球的對稱性且

2x 是奇函數。) 

右式，在邊界(球面)上 u=1， (1,0,0), ( , , ),
v

v n x y z v n x
n


      


  

同樣因為奇函數與球面的對稱性 0xdS


   

(1) 的證明： 

在散度定理 ( )F dV F ndS
 
    中取F u v   

則 F u v u v      以 n=3 為例 
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( , , )
v v v

v
x y z

  
 

  
， ( , , )

v v v
F u u u

x y z

  


  
 

2

2
( ) ( ) ( ) ...

v v v u v v
F u u u u

x x y y z z x x x

        
      

        
  

2 2 2

2 2 2
( ) ( )

u v u v u v v v v
u

x x y y z z x y z

        
     

        
  

u u v      

Green identity 很容易從第一形式改成第二形式：

( ) ( )
v u

u v v u d u v dS
n n 

 
     

     

同樣取為單位球，取 2 2 2,u x y v z    則可以驗證 

左式= 2 4
4

5
z dV



   ，右式= 2 2 2 2 3 4

(2 2 2 )
5

x z y z z dS



    。 

另外，在偏微分方程中有一個類似的習作可供參考： 

3R 中， ,
u

u f g
n


  


有解的充要條件為

D D

fdxdydz gdS


    

§ 04 divergence 與體積漲縮率 

細節請看[大域微分幾何]p.324： 

t 是向量場 W 的 flow，則 divW 是流形 M 沿
t 的體積漲縮率。 

§ 05 關於 Killing 向量場與 Jacobi 場 

X 是(M,g)上的 Killing 向量場的定義是 0XL g  。 

用局部座標表示 0XL g X X 

      

Killing 向量場滿足 0X X 

    ， ( ) i

idiv X X  

   代入 Killing equation，則 0X 

   所以 div(X)=0 

2S 上的六個 Killing 向量場(旋轉、平移)可以看作是球面的對稱生成元。 

例如R x y
y x

  
  
  

生成對 z 軸的旋轉，是一種等距變換，向量場 R 對 g

守恆，也就是說 0XL g  ，亦即 divX=0 

由於這些對稱操作不會「壓縮」或「擴張」面積元素，因此對應的向量場是無

散度的，這與散度在幾何上描述體積（或面積）變化率的性質一致。 

Killing 向量場在對稱方面的意義與其在廣義相對論中的重要性就略過。 

若在 2S 上取一 Jacobi 場 J(t)，沿著測地線 的 Jacobi 場 J(t)滿足
2

2
( , ) 0

D J
R J

dt
 
 

   
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2 2 2 2 2: sinS ds d d    ，其中  是繞極軸的旋轉方向，對應球面的旋轉對稱

性，是一 Killing 場，因此 ( ) 0div     

 不是 Killing 場， ( ) cotdiv      

計算過程： 

1. 
1

( ) ( )i

idiv X g X
g

  ，其中 2sing   

2. 向量場 X   ，其對應分量 1, 0X X     

3. 因此
1

( ) cos cot
sin

div   


      

在赤道 ( )
2


  ， ( ) 0div   ，表示無局部擴張或收縮。 

在北半球 ( )
2


  ， ( ) 0div   ，表示向量場向外發散。 

在南半球( )
2


  ， ( ) 0div   ，表示向量場向内收斂。 

Jacobi 場描述測地線族之間的距離如何變化，如果這些測地線朝向匯聚或發

散，Jacobi 場的散度就可以視為測地線擴張或收縮的度量。 

一般而言，Jacobi field 在 2S 上具有非零散度，這反映了測地線在球面上匯聚或

發散的本質。 

§ 06 散度定理與面積的變分 

[大域微分幾何]p.439~441]中有： 

衍理 2 

考慮 nM 到 1nX  的浸射，變分向量場V N ，N 是 nM 上的單位法向量(此時稱

為變分函數)則 

'(0)
M

A nH dM  。其中 H 是 nM 在 nX 中的均曲率。 

定理 2 

nM 為 nX 中的最小曲面 0'(0) 0v v

d
A AreaM

dv
     

以下是我的理解： 

考慮一個封閉曲面 S  ，其包圍的區域為，體積為 V。 

我們希望在保持體積 V 不變的條件下，找到使表面積 A 最小的曲面形狀。 

1. 引入 Lagrange multiplier 
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定義泛函
0( )J A V V   ，其中是 Lagrangian 乘子，

0V 是固定體積。 

2. 表面積與體積的變分 

(1) 表面積的(一階)變分：
S

A H dS   ，其中 H 是均曲率，是小函數，

曲面受到法向擾動 r n    

(2) 體積變分：體積V dV


  ，由散度定理
S S

V n rdS dS      

這裡利用散度定理將體積的變化轉換為曲面法向位移的積分。 

3. 結合變分條件 

0J A V       

把
S

A H dS   與
S

V dS   代入，得 ( ) 0
S

H dS     

因為是任意函數，所以H    

4. 結論 

在體積約束下，最小表面積的曲面滿足均曲率為常數。 

(極小曲面滿足 H=0，關於體積約束的最小面積請看[大域微分幾何] p.456~常均

曲率曲面。) 

唯一滿足此條件的封閉曲面是球體（球面的均曲率
2

H
R

 且處處相同）。 

我們看到了在將體積變分到面積變分的過程中，散度定理起了關鍵作用。 

這件事在[大域微分幾何] p.439 有提到，我只是用自己能理解的方式重述一遍而

已。 

至於為什麼表面積 A 的(一階)變分與均曲率有關，那是因為均曲率是衡量曲面

凹凸程度的量，要詳細說明那就是另一件事了。 
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