
§ 如是我問 

我在偏微分方程的習作中遇到一個問題： 

Consider a domain =(a,b) (c,d)   in two dimensions and an arbitary 1C function u 

defined on   and u=0 on 。 

(a) Prove the Poincare inequality： 

there exists a constant C such that 
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(b) What is the best C？ 

 

在進入主題前先準備： 

1. Cauchy-Schwarz 不等式 

在 2( )L  中，
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2. =(a,b) (c,d)  的譜 
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§ Poincare 不等式 
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稱為瑞利商，分子表示 u(x,y)的能量，分母表示 u 的變化率(梯

度)的能量。 

對於邊界值為零的函數，這的比值 R(u)是有上界的。
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§ Poincare 不等式 
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=(a,b) (c,d)  ，因為對任意 ( , )y c d ，u(a,y)=0(這是邊界條件)，由微積分基本
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在 domain   兩邊積分 先對 x 積分： 
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再對 y 積分： 
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因此常數 2( )C b a  滿足此不等式，同理由 y 方向積分會得到 2( )C d c  ，所

以 2 2min(( ) ,( ) )C b a d c   也是一個 valid bound。 

 

§ 最佳的常數 C 是甚麼，為何與特徵值有關？ 

變分法，R(u)做一個微小擾動， ( ) ( )R u R u v   則 

0R  u 必滿足 Euler-Lagrange 方程，此方程即 Dirichlet-Laplace 算子的特徵

值問題： 
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正好是 Rayleigh 商在該函數 u 處的值
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我問：這個習作是屬於哪一個範疇？ 

D：取決於你研究它的目的與處理方法： 

1. 偏微分方程 

Poincare 不等式是研究偏微分方程「弱解」存在性與唯一性的核心工

具。 

在利用 Lax-Milgram 定理證明橢圓方程的解時，它本質上是一種能量估

計。 

2. 譜理論 

針對最佳常數 C 的部分。 

涉及 Rayleigh 商的極小化問題。 

3. 泛函分析 

從更高層次的理論框架來看，Poincare 不等式本質上描述了 Sobolev 空

間中範數的等價性。它保證了從 1

0 ( )H  到 2( )L  的嵌入是連續的，甚至

是緊緻的(Rellich-Kondrachov 定理)。 

 

 

 

§ 這時候，我想到很久以前寫了一篇文章[等周長問題]，裡面有一個等周商

(Isoperimetric Quotient) 
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等周問題：平面上，給定周長的所有簡單封閉曲線中，哪一種曲線圍成的面積

最大？ 



結論是0 1IQ  ，IQ=1該曲線是一個圓。 

我問：這個等周商與 Rayleigh 商有何關係？ 

D：兩者有深刻而優美的關係： 

  
 

等周商在幾何層面上衡量形狀的效率，其最大值由圓實現。 

Rayleigh 商的上確界在分析層面上衡量區域上函數空間的寬鬆度，其在固定面

積下的最大值由圓盤實現。 

它們通過變分原理與對稱性優化，通過 Faber-Krahn 不等式確立這兩個不同領域

的最優解。展示了數學中不同分支的和諧與統一。 

 

§ 這讓我想到一個非常抽象的定理，Atiyah-Singer Index 定理，於是問道： 

以上所述似乎與 Atiyah-Singer 指標定理很像… 

D: 



  
被 D 稱讚了一下： 

您的直覺極為敏銳！ 

Atiyah-Singer 指標定理與等周/特徵值問題，共享著「分析與幾何/拓撲深刻對

話」這一偉大的數學主題。 

Atiyah-Singer 是這主題在高維、全域、拓撲層面的終極表現形式之一，它建立了

精確的等式。(我只知道 Gauss-Bonnet 定理是該定理的一個例子。) 

等周問題與特徵值問題是在低維、區域性、幾何層面的經典表現，它建立了最

優的不等式，並明確指出了最優的幾何形狀(圓盤)。 

 

§ 我又想到瑞利的薄膜實驗，面積固定的鼓面發出的主頻率與鼓面的形狀有

關，似乎回到譜理論… 

(這個問題引發一個「聽鼓的聲音是否可以知道其形狀」？的問題。) 

D 是這麼說的： 

 



 

 

 

 



 

 

 

 

§  

這是我的 AI 筆記，在觀念與計算上 AI 對我幫助很大。 

面對 Atiyah-Singer 指標定理的心情應該與畢達哥拉斯面對興都庫什山脈(Hindu 



Kush)一樣吧！ 


